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Abstract

In this dissertation, active control is used to suppress flutter and

divergence found in forward-swept advanced-composite wings. The stability

analyses are performed using linearized equations of motion in the Laplace

domain. These analyses are made possible by using Pad6 Approximants to

provide aerodynamic forces for damped wing and control surface motions. An

improved method of obtaining the polynomials of the PadA Approximants is

introduced. This method provides generalized aerodynamic forces in the

Laplace domain that are both accurate and easy to interpret. The method's

accuracy is indicated using correlations with wind tunnel experiments of

forward-swept wings. The improvement involves the use of one second-order

polynomial as a single common denominator for all generalized aerodynamic

forces. Two cantilever forward-swept wings are analyzed as examples for

active control application with leading- and/or trailing-edge flaps as

control devices. One test wing is most critical in divergence, while the

other wing is most critical in flutter. The flaps are actuated using

simple feedback signals from acceleration, velocity, and displacement

sensors. Using root locus plots of the characteristic roots from the

transformed equation of motion, the stability of each combination of flap,

sensor, and gain is determined. Stability is improved by an increase of

25% in the critical airspeed for the divergence-critical wing example using

a leading-edge flap and elastic displacement sensing. Similarly, stability

is improved by an increase of 30% in the critical airspeed for the

flutter-critical wing example using a trailing-edge flap and elastic

acceleration sensing. However these stability improvements are limited by

the emergence of secondary aeroelastic instabilities (which become most

critical) when the original primary instabilities are suppressed by active

control. However practical wing designs usually exhibit these secondary

instabilities at such high airspeeds that active control improvements to

aeroelastic stability should be much larger when applied to actual flying

hardware.
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I. INTRODUCTION

The purpose of this investigation is to apply active feedback control

to the aeroelastic instabilities of divergence and flutter found in

forward-swept wings. First, an improved formulation for the calculation of

aerodynamic loads is developed in the Laplace domain. This aerodynamic

formulation will then allow use of the linear-analysis methods of classical

control theory that are posed in the Laplace domain. Using these methods,

active feedback compensation is devised for the control of both divergence

and flutter instabilities. These classical control design methods provide

simple control laws that increase to acceptable values the critical

airspeed at which flutter and divergence occur. These control laws provide

the link between the aerodynamic forcing devices of flap control surfaces

and the motion-measurement devices of wing-mounted sensors. Several

configurations of flaps and sensors are investigated, and the classical

method for linear controls allows for the independent investigation of the

effects of each sensor and flap configuration. Examples will be shown of

effects on flutter and divergence of both stabilizing and destabilizing

control laws. In these examples, the trade-off can be demonstrated that

sometimes occurs in improving one instability at the expense of another.

Background

Wing sweep has been used as a method for delaying the effects of

compressibility in high-speed wings since World War II. The magnitude of

the velocity of the airflow perpendicular to the leading-edge of a wing can

be used as a measure of the compressibility effects that develop on that

wing. As this velocity component approaches the speed of sound, large

increases in drag occur initiated by the severe adverse-pressure gradients

that develop on the wing's upper surface. As a wing is swept, its leading

edge is no longer perpendicular to the direction of the freestream airflow.

It is rather, at an angle defined by A , the sweep angle of the wing.

Therefore, only a component of the total-velocity vector is perpendicular

to the wing's leading-edge. By increasing A\, the total-velocity vector

l-q
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can be increased, while, at the same time, holding the component

perpendicular to the leading-edge at an acceptable level (Ref. 1).

Therefore, the airplane can travel faster while the detrimental

compressibility effects of the wing are reduced. Either positive sweep

(wing tip positioned downstream from the wing root) or negative sweep (wing

tip upstream of the wing root) has the same theoretical potential for

reducing the losses due to compressibility of an infinite wing. However,

both forward- and aft-swept wings exhibit aeroelastic instabilities.

Figure 1 (Ref. 2) shows how forward-sweep results in a more severe drop

(than an equivalent aft-sweep) in the airspeed at which aeroelastic

divergence occurs. In aft-sweep designs, Figure 1 also suggests that

flutter generally has a lower critical airspeed than divergence. It has

historically been much more structurally efficient to eliminate the flutter

problems of metal wings having aft-sweep than the diveregence problems of

metal wings having forward-sweep. Thus, aft-sweep rather than

forward-sweep has been the prevalent design approach for improving

compressibility characteristics of high-speed wings.

There have been some isolated uses of forward sweep in the past, and

brief history of the use of forward sweep is found in Reference 3. The

earliest example of modern aircraft employing an all-metal design that used

forward sweep is the Junkers 287 German bomber of World War II. A later

example is found in the HFB 320 business jet of the mid-1960's. Both of

these aircraft used a forward sweep of less than 15° to move the wing's

carry through" structure in the aircraft's fuselage aft of the payload

area. In these designs, structural packaging (rather than compressibility

problems) was the prime reason for using the forward sweep. The bomber

never completed its early flight tests because the Allied armies overran

its testing area, and the business jet was built only in limited

quantities. But no difficulties are reported for either aircraft as a

result of the forward sweep. The forward sweep of both types of aircraft

is not enough, however, to significantly improve high-subsonic

compressibility problems of modern high-performance aircraft. When the
negative sweep angles of 300 or more (needed to delay compressibility for

2
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high-subsonic aircraft) are used, the wing's structural weight becomes

excessive. But now that aeroelastic tailoring of composite materials in

the wing's structure can solve the divergence problem, the possible

aerodynamic benefits of this sweep configuration are being quantified.

Aeroelastic Divergence and Flutter

The primary wing stability problems examined here are the aeroelastic

instabilities of flutter and divergence. Brief explanations of these are

in order. These wing instabilities result from combinations of flow

conditions and wing properties (both elastic and inertial) that allow wing

deformatioas to increase quickly until there is structural failure. While

rigid body motion of the wing can, in some cases, contribute to these

instabilities, this investigation will examine only the more fundamental

forms of flutter and divergence that contain no rigid-body motion. Flutter

and divergence conditions are normally defined in terns of the freestream

airspeed of the wing experiencing them. While several airspeeds may be

found that have neutral aeroelastic stability, the lowest freestream

airspeed at which neutral stability is maintained determines the critical

airspeeds for divergence or flutter. Reference 2 gives definitions for

divergence and flutter. They are summarized here as they apply to

cantilever wings.

Aeroelastic divergence occurs when a lifting surface attains a

freestream airspeed, where any small flow disturbance produces immediate

and progressive increases in the elastic deflection of the wing, until

structural failure occurs. Flutter is an oscillatory aeroelastic

instability that involves the interaction of the elastic deflections of the

wing, the associated changes in the wing airloads, and the mass properties

of the wing. Flutter occurs when a lifting surface reaches an airspeed

where any small flow disturbance causes immediate oscillatory elastic

deflections that grow until structural failure occurs.

The deformation patterns of flutter and divergence explain why,

4
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traditionally, aft-swept wings (prone to flutter instabilities) have been

preferred to forward-swept wings (prone to divergence instabilities).

Flutter instabilities, as previously mentioned, involve the inertial

characteristics of the wing (defined by its mass distribution) in addition

to the wing stiffness and aerodynamics. As airspeed increases, flow

conditions develop allowing energy to be extracted from the airstream.

This condition occurs because of the phase relationship between oscillatory

wing motion (strongly influenced by the wing's mass distribtution) and the

accompanying aerodynamic loads. Classically, small changes in the mass

distribution and stiffness in metal wings can be used to increase the

critical airspeed for flutter until this airspeed is outside the aircraft's

operating envelope. Divergence instabilities in metal wings, however, must

be eliminated by adding usually prohibitive amounts of structural material.

This large amount of material is necessary to make the wing's structure

stiff enough to minimize the wing's deflections under all airload

conditions. This stiffening for divergence requires much more structural

weight than the increases in mass required for the elimination of flutter

(Ref. 4). When forward-sweep, rather than aft-sweep, is employed in metal

wings, the result is a heavier aircraft. Thus, high-speed aircaft have " -

historically incorporated aft-swept wings.

Aeroelastically Tailored Composite Materials

With the advent of advanced filamentary composite materials, such as

graphite/epoxy and boron/epoxy, new approaches for the elimination of

flutter and divergence are available. The design technique of aeroelastic

tailoring exploits the anisotropic material characteristics of composite

materials to solve aeroelastic problems in aircraft wings. Proper

orientations of the reinforcing fibers create beneficial couplings in the

deformation patterns of tailored composite wings. These deformation

patterns postpone the onset of divergence and flutter to safe airspeeds

(Ref. 5). Typical of these patterns is a twist introduced into the wing as

it bends. Using aeroelastic tailoring, Krone (Ref. 6) has showm that it is

possible to design high-performance forward-swept wings using a wing

struicture that is as light as that of aft-swept wings. With the
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opportunity now available to build forward-swept wings of reasonable

weight, several aircraft manufacturers have re-examined forward-sweep.

They have shown that (Ref. 7) significant improvements in wing aerodynamics

rather than aft sweep when applied to high-performance fighter aircraft.

These improvements are due, in part, to the characteristic of inward

spanwise flow near the wing tip in forward sweep. The use of forward sweep

allows the wing-tip region to produce lift more effectively, promotes

root-stall rather than tip-stall, provides higher sweep for the shock

formations on the upper wing surface, and results in better cross-sectional

area distributions when applying area-rule techniques to minimize wave drag

(Ref. 3). The government is now funding the construction of a

demonstration aircraft (the X-29) with forward-swept wings to investigate

the extent of these benefits, and aeroelastic tailoring of its advanced

composite wing structure provides adaquate critical airspeeds for

divergence and flutter. This research examines an alternate method for

providing aeroelastic stability for forward-swept wings.

Active Feedback Control

In the investigation documented here, active feedback control is used

to increase the critical airspeeds for divergence and flutter found in a

forward-swept wing similar to that found on the X-29. If active controls

are used to stabilize aeroelastic divergence and flutter, then the use of

highly coupled composite wing construction can be avoided. Active control

would then allow conventional metal construction or more traditional

near-isotropic composite construction of forward-swept wings. The active

control system considered here incorporates movable leading- and/or

trailing-edge flaps to provide the stabilizing aerodynamic forces for the

aeroelastic instabilities. The feedback loops used to direct the flap

movements consist of elastic-motion sensors connected to flap actuators

through linear-gain amplifiers. These loops transmit signals

(corresponding to the sensed motion) to the flap actuators. The gain

amplifiers adjust the signals to proper levels for maximum aeroelastic

stability of the wing. A conventional and methodical approach is used to
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determine the most useful feedback loops and best gain values for the

improvement of aeroelastic stability.

Approach

In this research, the classical "gain-parameter root locus" method is

used for determining the required feedback and control to suppress

divergence and flutter. The application of this method to aeroelastic

divergence was first used by this author and reported in Reference 8. Each

individual sensor and aerodynamic flap is examined in individual linked

control paths. In this way, the controls engineer can examine the impact

of each control law on the elastic stability of the wing. The results of

these studies will suggest general conclusions about active-control

applications to forward-swept wing problems. While optimal-control
S

techniques are not used in this general investigation, they can increase

the effectiveness of active-control systems on specific aircraft. Wykes

has used these optimal-control techniques in designing control systems for

forward-swept wing flutter caused by elastic wing-bending and rigid-body

coupling (Ref. 9). Chipman has also used these control techniques to

devise a system to suppress forward-swept wing aeroelastic divergence on an

X-29A configuration (Ref. 10).

History

The study of the effects that active control has on aeroelastic

instabilities is not new. It began with the first applications of

hydraulically boosted control surfaces in the early 1950's. With the

advent of high subsonic flight, the pilot's effort to move control surfaces

was too great, so boost devices were introduced to reduce his effort.

Early investigations of the effects on aeroelasticity were aimed at

avoiding flutter that could inadvertently be induced with these new boosted

control systems (Ref. 11). The investigations progressed in the 1960's

from merely avoiding the aggravation of acroelastic instabilities to later

using the control surfaces to provide stabilizing forcing finctions for

rigid-body as well as elastic instabilities (Ref. 12). A pilot made the

first flight demonstration of feedback control for flutter using a Boeing

7



B-52D flight-test vehicle (Ref. 13). Here, a low-frequency wing-flutter

mode was successfully stabilized by actuating trailing-edge flaps according

to wing elastic motion. Subsequently, higher frequency and more

complicated instabilities were examined. The latest applications of active

controls in the aeroelasticity of conventional wings are adaptive-control

algorithms that suppress flutter in external stores (Ref. 14 and Ref. 15).

All of these applications of active control to aeroelastic instabilities

were made to straight- of aft-swept wings exhibiting flutter rather than

divergence aeroelastic instabilities. Active aeroelastic control was first

applied in forward-swept wing configurations to solve a flutter instability

involving rigid-body pitch and elastic wing-bending (Ref. 9 and Ref. 10).

Early flight demonstration designs of forward-swept wings showed a strong

sensitivity to this rigid-body pitch and elastic-wing bending flutter.

This effort is focused on active control applications to aeroelastic

flutter and divergence without rigid-body motion for forward-swept wings.

This research is done by using a cantilever boundary condition for the wing

structure. Thus, rigid-body motion (such as rigid-body pitch) is not

allowed in the analyses, and classical wing divergence can be observed in

the wing's response to disturbances.

Overview

The presentation of this research is organized in the following

manner. The study of feedback control for forward-swept wings is much

easier if the development of their equations of motion in the Laplace

domain results in a form compatible with standard active control

techniques. Thus, the development of the equations of motion, and in

particular the development of suitable aerodynamic forces in polynomial

form, is presented first to show the wing equations in proper form for the

stability analyses. Using these equations, the wing responses are then

examined for disturbances .here a series of feedback sensor, gain, and

control-surface configurations are included in the stability equations.
Successful feedback-control configurations for forward-swept wing flutter

_% and diverclence are found and then examined in more detail. Finally, some

conclusions are drawn from the results of the case examples. In an
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appendix that follows the main text, some of the development details and

stability results are included from preliminary calculations using a

two-dimensional airfoil. Also included as appendices are details of the

doublet-lattice method and some wind tunnel correlations made using the

Pad6 approximations to doublet-lattice aerodynamics. The specific items

contained in each chapter are organized in the following manner.

The development of the equations of motion in the Laplace domain is

described in Chapter II. Details are included of the transformed mass and

stiffness representations, along with the coordinate system used in the

analytic model of the wing. Using insight developed from two-dimensional

wing examples found in Reference 16 (and outlined in Appendix A), a new

formulation for the wing aerodynamic forces is presented in Chapter II.

This formulation presents a new method for employing Pad6 Approximant

polynomials in calculating wing forces due to damped motion. These

polynomials are also used in calculating the stabilizing forces created by

movements of the leading- and trailing-edge control surfaces. The feedback

control laws and the sensor measurements they require are also described in

Chapter II. The sensor locations and the several combinations of

measurements they provide offer 96 possible simple feedback control

combinations for stabilizing flutter and divergence. These combinations

are then applied to specific wing examples in Chapter 11I.

In order to demonstrate the usefulness of the several feedback control

combinations described in Chapter II, two example cases for forward-swept

wings are examined in Chapter III. These example cases use a cantilever

forward-swept wing geometry similar to that used to perform the early

forward-swept wing fighter studies (Ref. 7). These early forward-swept

wing geometries were developed to perform missions similar to those of the

light-weight fighter of Reference 17. Te active-controls applications

found in this investigation represent active-control applications for

modern fighter-category aircraft. nlese forward-swept wing examples have

either flutter or divergence as their most critical a,,roelastic

instabilities. The evaluation and selection of useful feedback control

0
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laws for these examples are presented graphically using plots on the

complex plane. These are plots of the loci of the characteristic roots

calculated from the wing equations of motion. These loci are defined by

the movement of the roots that results when a selected parameter (amplifier

gain or freestream airspeed) is varied. With these plots the stability of

the wing can be inferred and most advantageous gain values selected for

improved stability.

In Chapter IV some conclusions are drawn from the case studies of

Chapter III. Not only are specific wing stability improvements discussed,

but also some changes in wing design philosophy are suggested. When active

control methods are used for stability augmentation, some of the

restrictions can be removed on the wing structural designer. The specific

wing stability improvements shown here illustrate possible approaches for

wing stability augmenation. The actual amount of stability improvement

greatly depends on the specific wing designs examined. The considerable

improvements demonstrated here suggest however that active control can

contribute considerably to wing aeroelastic stability.

f.'.
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CHAPTER II - WING ANALYSIS

The equations of motion to be used for the wing aeroelastic stability

calculations are described in this chapter. The formulation used for the

aerodynamic forces is discussed in some detail since it differs from

methods used in the past. Using the formulation of these aerodynamic

forces, the stability equations for the unaugmented wing are then

calculated. Forces due to movement of the wing's leading- and

trailing-edge control surfaces are also calculated. These control-surface

forces are then used to stabilize the wing by requiring the control

surfaces to move according to control laws that use as inputs measured wing

motion. These control laws can be formulated to prescribe the

control-surface motion as functions of the wing degrees-of-freedom. This

linkage between control-surface forces and the degrees-of-freedom provide

the means to incorporate the stabilizing control-surface forces in the

unaugmented wing equations of motion. The resulting augmented wing

equations of motion can then be used for examination of the best gain

values in the control laws for improved wing stability.

The equations of motion used here for the aeroelastic-stability

calculations are developed in a similar way to the equations used for other

stability calculations, such as buckling. That is, a wing at equilibrium

in the flow is assumed. The wing is then subjected to small disturbances,

and the stability of this equilibrium position is determined by the

changing wing position in relation to this equilibrium with the passage of

time. By observing the wing response about the immediate vicinity of the

equilibrium position, the stability of the wing can be determined using

linearized equations for the structure and resulting aerodynamic forces.

These equations are developed in the following sections.

Equations of Motion

In developing the wing eouations of motion, the equilibrium wing

position can be any steady-state lift condition for the aircraft. The
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position most commonly used, and the one used in this investigation, is the

zero-lift condition. It can be shown that the linearized equations about

this equilibrium condition will properly predict the critical velocity for

aeroelastic instabilities (Ref. 2). Accordingly, the wing will be treated

aerodynamically as a flat plate without twist or camber. The wing is at

zero angle-of-attack before the disturbance is applied, and the wing's

deformation response relative to the zero condition will determine

stability. Deformations that eventually die away to zero and remain zero

with the passage of time indicate a stable configuration. If the

deformations eventually grow without bound as time passes, an unstable

configuration is indicated. And the critical-flow conditions (where the

deformations neither grow nor subside with time) indicate neutral-stability

conditions.

The wing examined here is a cantilever forward-swept wing (Figure 2)

that has its root rib rigidly attached to an immovable foundation. This

cantilever attachment eliminates any rigid-body aircraft motion from the

wing's stability analysis. The wing, in its undeformed state, has a

neutral plane (or plane of symmetry) in the xy plane, with the x axis at

the centerline. The y axis is perpendicular to the x axis. The wing

deformation is calculated from the movement of this neutral plane and

represented by the function h, defined in terms of the spatial x, y

locations and time t. The transverse displacement h is approximated by a

finite sum:

N

h(x,y,t) = Zui(xy)a (t) (1)

i=l

The displacement functions u.(x,y) are the first N natural vibration mode

shapes (out-of-plane) of the wing, and the time functions aW(t) are the

modal amplitudes that prescribe the contributions in deformations of each

mode with time. The equations of motion are developed from Lagrange's

equation.
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d (2)d ( T + au Q i total
dt a,

In this equation, T is the wing's kinetic energy, U is the elastic strain

energy, and Q is the total generalized force.

The kinetic energy can be obtained by summing all of the kinetic

energy in each element of the wing's mass using the vertical velocity h.

T1--/2 [l(x,y,t)] P (x,y)dxdy
fJ wing area

N N
=1/2 [ u(x,y)A (t) Z uj (x,y)a (t) ]' (x, y)dxdy (3)

ffi=l j =l
wing area

The wing's mass distribution as a function of x and y is the function .

By interchanging the orders of integration and summation, equation 3 can be

simplified.

N N

T =112 m Zii(t); (t) (4)

i=l j=l

The constants mij represent the inertial coupling terns beween the

generalized coordinates u and u..

j..

m =,) (x .v) "(x .v) Jdxdy (5)

N 
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The matrix of elements mij is symmetrical, allowing i and j to be

interchanged.

The potential energy term, U, is developed from the internal elastic e

forces created in the wing, resulting from the deformation of its elastic

structure, as described in Reference 2.

U =1/2 (x y t' k(x,y; , h( ,,t)]d dTdxdy (6)

wing areaf wing area

The stiffness function, k(x,y;,, ), defines the force required at x,y to

maintain a unit displacement in the wing at location ,7 of the wing. By

using the form of h in equation 1, the area integration over the wing can

be included as constants in the energy summation.

N N

U = 1/2 kj a (t) (7)

i=1 j=l

The area integrations define the constants kij which relate the structural

stiffness influences between the generalized coordinates ui and uj:i %

kij = i(xY) E(x,y; ,7)]u.( , )d dldxdy (8)

ffwing area ffwing area

The generalized forces, i' are calculated using the natural-mode

generalized coordinates of equation 1. They include both the aerodynamic

forces F (resulting from the wing shape) and the force that initiallyae ro

disturbs the wing from its equilibrium, Fdist:
¢ ..
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Qi total = aero(xy,t) + Fdit(x,y,t)jui(x,y)dxdy (9)

Qi aero +Qi dis

When all of the energy terms are combined into equation 2, the resulting

set of N equations of motion is obtained in terns of the vibration-mode

generalized coordinates:

N N

Zmij i(t) + Zkijai(t) = Qi total (10)

j=] J=l i = I N

The number of modes used (and therefore the value of N) in the equations of

motion is determined by the least number of coordinates required to

accurately predict U and U . For the wing studies, the first four vacuum
d f

vibration modes are sufficient. The equations can be written in more

compact form, using matrix notation.

IM] ja(t)I + [KI ja(t) Q1 ~ (11)

These equations can now be solved to determine if any of the resulting

coordinates a.(t) will increase in magnitude with time and define an

aeroelas tic ins tabilitv.

Structural Representation

The calculations of the normal-mode shapes u. and the area

,° 1
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integrations of the influence functions, such as k(x,y; , ), for the

equations of motion are made using a Rayleigh-Ritz formulation, (Ref. 2)

similar to that used for plates. This Rayleigh-Ritz approach lends itself

to continuous polynomial descriptions of the stiffness and inertia for the

wing structure, and polynomials for thickness distributions are the easy

way to represent multi-layered composite structure. The Rayleigh-Ritz

formulation is, therefore, especially useful for the kind of wing used in

this research. The wing structure is made of advanced filamentary

composite material aeroelastically tailored to provide selected flutter and

divergence airspeeds. The tailoring of the composite material results in

spanwise and chordwise variations in the thickness of the layers of

composite material. These variations are so prescribed to get a wing

structure that deforms in desired patterns under specific load conditions.

These material distributions in the wing-box covers can be represented best

as polynomial functions of x and y. This plate formulation, employing

these polynomials, is highlighted below.

A description of the wing structure is useful in understanding the

Rayleigh-Ritz plate analysis. To help with this description, a planform

view of the cantilever wing is given in Figure 3. Both the aerodynamic

planform and primary load-carrying structure (structural box) of the wing

are depicted. The cantilever condition for the structural box is shown at

its root rib. The wing planform has a leading-edge sweep of -31.1 ° . The

semi-span is 265 inches, with the aircraft's centerline root chord of 136

inches and a tip chord (parallel to the freestream direction) of 58 inches.

The wing's thickness-to-chord ratio is 5%.

The structural box is that portion of the wing's volume that contains

all of the primary structure for the wing. So those portions outside this

box are normally considered as secondary structure. The deformations in

the secondary structure are calculated by extrapolating (into the planform
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region of the secondary structure) the deflections and rotations occurring

at the perimeter of the primary structure.

The structural box is modeled analytically as a layered plate and

shown in cross-section with the section-cut of Figure 3. Each layer is

described using a thickness polynomial in the x and y over the planform.

Each layer contains a thickness distribution of advanced composite material

corresponding to a particular fiber direction. The wing plane of symmetry

is defined at 0 on the z axis (the mid-plane of the plate), so all of the

structure in these layers above the plane has a mirror image below this

plane. There are three material layers on each side of this neutral plane,

and these three layers above and below the plane collectively represent

respectively the wing-box upper and lower covers.

The composite material used in each layer is a unidirectional graphite

fiber embedded in an epoxy matrix. The unidirectional properties used for

this investigation are typical of graphite/epoxy systems used in aircraft

and represent current design values. The material density is .054 lbs/in
3

6 2The Young's Modulus for the fiber direction is 21.xlO lbs/in ; and for all

the directions transverse to the fibers the modulus is i.2x10 lbs/in
6 2Poisson's Ratio is .21 with a shear modulus of .65x06 lbs/in . Since

there are three layers for each side of the wing box, there will be, at

most, three different fiber directions for the wing box. These directions

are prescribed by the angle the fibers make with the leading-edge sweep

line of the wing box as shown in Figure 3. The thickness distribution of

each layer with a given fiber angle is allowed to vary both spanwise and

chordwise according to sixth-order polynomials. These thickness

distributions are required to fit inside the external geometry of the wing

box. In the actual wing box, the structural-box covers are stabilized by a

layer of substructure such as spars, ribs, or full-depth honeycomb

material. In this plate representation of the wing box, the substructure

is another layer of material filling the volume between the upper and lower

covers. It has infinite shear str, gth and a density of aluminum

honeycomb. This substructure layer is repref'entative of a high-modulus

full-depth honeycomb core. The wing box is enclosed by a leading-edge
4."
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spar, trailing-edge spar, root rib, and tip rib. These structural members

are included in both the elastic and inertial calculations for the plate

analysis. The geometry of the plate thus comprises seven layers of

material arrayed symmetrically about the x,y plane. The total plate

thickness is prescribed by a third-order polynomial in x and y. In

summary, this plate volume has the three composite layers clustered at the

upper and lower surfaces. The volume in between the upper and lower

clusters is treated as the seventh layer of substructure.

The above plate geometry (resulting from modeling, analytically, thin

fighter-wing structural boxes as plates) lends itself to thin-plate theory.

Therefore, the neutral surface is assumed coincident with x, y plane before

loads are applied to the wing. After the loads are applied, no in-plane

stress or "membrane" stretching of the plate is allowed at the neutral

surface. The plate analysis uses further simplifying assumptions to make

the calculations easier. The first assumption requires that lines in the

wing box normal to the neutral plane remain normal to that plane in the

deformed state of the wing box when loaded. This assumption is also known

as the Kirchoff hypothesis and implies a second assumption, that of small

displacements throughout the structural box.

The plate analysis used here calculates the influence-function

integration of equation 8 using a Rayleigh-Ritz approach for a thin square

plate of unit length on each side. Thus, the trapezoidal wing box planform

must be converted to a unit square planform. A set of mapping functions

converts the general trapezoidal geometry of the wing box to the unit

square. Then a sixteen-term Taylor series can be used in the integration

of equation 8 to approximate the elastic relationships of the square plate.

The assumed displacement functions used for the Rayleigh-Ritz calculations

are made up of sixth-order Legendre polynomials prescribed in both the

spanwise and chordwise directions of the unit square. Using these Legendre

polynomials to describe the mode shapes, the mass contributions of the

equations of motion can be calculated from equation 5. All that remains

then is the development of the generalized forces. The development of

suitable expressions of Qi are discussed in detail in a following section.
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To determine the aeroelastic stability of the cantilever wing, the

generalized equations of motion in matrix equation 11 are used to calculate

the wing's motion after the occurrence of a small disturbance. An unstable

condition exists when the generalized coordinates ai of equation 11 get

larger as time lapses. The way the functions ai change with time is

calculated here using a Laplace transformation from the time domain. For

items transformed with the Laplace transformation, the notation is the bar

over the variable.

N
f[h(x,y,t)] = [ ui(x,y)ai(t)]

N

; e -st ut(x,y)ai(t) ]dt  (12)

N

SZU(Xy)a(s
)

i=1

= h(x,y,s)

The motion of any x,y locations of the wing in time can now be calculated

using the Laplace variable s. Transforming matrix equation 11 into the

Laplace domain produces algebraic equations in s rather than differential

equations in time.

s2[IMIf + [K]a = total (13)

When the generalized forces are transformed into the Laplace domain, the

resulting algebraic equations of motion can be used in a stability

analysis. Positive, neutral, or negative aeroelastic stability of the wing

is then determined if the inverse transform of i(s) becomes smaller,

remains constant, or grows with time respectively. The calculation of

these transformed aerodynamic forces requires a method for predicting the

loads due to damped motion rather than just oscillatory motion. This

requirement has historically offered considerable difficulty, but it is now

21M
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possible to meet this requirement using the following develcpment of the

generalized forces in the Laplace domain.

Aerodynamic Forces

In this section the method for calculating the aerodynamic forces of

the wing is described. The formulation employed here uses Pad4-

Approximants as polynomials to represent the wing forces. The Pad|

Approximants provide a means of calculating in the Laplace domain the

aerodynamic forces from damped wing motion. A desirable feature of these

Pad6 Approximants is that they can be calculated using presently available

methods for pure sinusoidal motion such as the doublet-lattice method of

Reference 18. The doublet-lattice method is desirable because it can be

used for general lifting surface geometries and allows the representation

of control surfaces on these lifting surfaces. The way the Pad6

Approximants are calculated and used have been modified here to improve

their utility in wing aeroelastic stability analyses. This improvment is

outlined in the following descriptions.

The use of Pad6 Approximants here results from some preliminary

evaluations of approximating functions such as those used by Vepa (Ref. 19)

and direct calculations such as those suggested by Edwards (Ref. 20). The

evaluations were made using a simple two dimensional airfoil and are

summarized in Appendix A. The method used here is similar to those used by

active-control analysts to obtain transfer functions in the Laplace domain

for unknown "black box" devices. That is, known functions are input into

the "black box- and the resulting responses from the "black box" are

recorded. Using these measured responses a transfer function can be

calculated that approximates the "black box." For aeroelastic

calculations, the "black box" is the sinusoidal aerodynamic prediction

methods, such as doublet-lattice. These provide the necessary force

responses to the known input functions which are the sinusoidal wing

motions. The Pad6 Approximants are the transfer functions of s that

provide wing forces due to damped wing motion.

The Pad6 Approxmants are ratios of polynomials in the Laplace

variable s that have constant coefficients. They are called Pad6 hecaLse

22l
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of their similarity to the Pade method of approximating measured data with

series (Ref. 21). Schwanz has summarized and documented several forns of

approximating functions in Reference 22. The functions used here are

chosen based on their accuracy of aerodynamic force approximations and

their compatibility with the wing equations of motion that are written in

the Laplace domain. The form is shown in equation 14 and is similar to

that suggested by Vepa.

n d
f f

A j P fjl f  / I. + ZQfjl )s (14)

f=O f=1

The force corresponding to degree-of-freedom J and created by

degree-of-freedom 1 is represented by a polynomial of order n divided by a

polynomial of order d. These polynomials of the Laplace variable s have

the constant coefficients Pfjl and Qfjl. These coefficients are defined by

a two-stage fitting process using the least-squares method. The orders n

of the numerator and d of the denominator are 3 and 2 respectively. These

orders were chosed as a result of preliminary evaluations made of Pad6

Approximants using a two-dimensional airfoil. These airfoil studies are

highlighted in Appendix A.

In order to determine the polynomial coefficients in equation 14, wing

aerodynamic forces are first calculated for pure sinusoidal wing motion.

These sinusoidal forces are calculated for several frequencies of wing

motion. Twenty values of frequency are used here to provide a frequency

range wide enough for calculating Pad6 Approximants that are capable of

predicting both flutter and divergence. The coefficients of the

polynomials in equation 14 are then adjusted to provide the best

approximation in the least-squares sense of the forces at which the

frequencies were calculated. Each of these frequencies of wing motion is

specified in the non-dimensional form of equation 15 and is referred to as

a reduced frequency k.

)3
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k Wb/U (15)

i.

In defining this reduced frequency, iis the actual sinusoidal frequency,

U is the freestream airspeed of the wing, and b is a wing reference length.

The value of b is usually half the mean aerodynamic chord or half the wing

root chord. The root semi-chord is used here. The forces calculated as a

function of frequency k can be related to equivalent forces in the Laplace

domain as a function of s by observing the constituents of s. The value of

s can define a root from the equations of motion in the Laplace domain.

s = + iL W (16)

The real part of s, noted here as d-, defines the sense of damping, and the

imaginary part, noted here as W , is the frequency. By

non-dimensionalizing s in the same way as was done with LiJ in the reduced

frequency of equation 15, the relationship between k and s can be seen.

s = s b/U

- -b/U + ik (17)

Note that in the special case of zero damping s is defined only by k as its

imaginary part. Thus, aerodynamic forces calculated for the twenty reduced

frequencies using the doublet-lattice method are valid for pure undamped

sinusoidal motion. Therefore, they can be used for the Pad6 fitting

process by providing twenty sets of forces for non-dimensional and purely

imaginary values of s. The polynomials of s are then calculated to

approximate these twenty sets of forces using a least-squares fitting

algorithum.

The detailed steps of the aerodynamic calculations used here begin

with the sinusoidal airloads. The source of the forces for subsonic

-compressible airspeeds used here is the doublet-lattice method of Reference

18. This is a method that us.es arrays of doublet singularities in

.
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potential flow and is discussed in more detail in Appendix B. These

singularities create the same downwash at selected locations in the

potential flow field that would correspond to downwash caused by the

oscillating wing. As described in Appendix B, this method provides a way

of calculating the unsteady aerodynamic forces by generating linear

aerodynamic influence coefficients aij" The wing planform is divided into

small regions or panels and the i constants relate the effect each panel

region has on all the other panels. The coefficients define the force

contribution on the ith panel due to wing motion at the control point of

the jth panel. Therefore, forces on the wing are represented by

concentrations of forces in each panel using the superposition of the

influence of all panels, as represented by matrix equation 18.

FI (t) al a12 aim hl(t)

F (t) 1

2 21 22 2m h 2 (t)S• (18)

F (t) a " . " aM hM(t)

Therefore, as the panels are arrayed over the entire wing planform, the

overall forces on the wing are represented. The doublet-lattice

idealization of the forward-swept cantilevered wing for this effort is

shown in Figure 4. These 96 panels provide the array of forces created on

itself as the wing performs sinusoidal motion in the presence of streamwise

airflow. These sinusoidal forces are then put in generalized form to be

compatible with the wing equations of motion. This is done using the wing

natural vibration modes.

Recall that the coordinates for the cantilever wing are the wing's

natural-vibration mode shapes. Therefore, a coordinate transformation is

needed to make the doublet-lattice aerodynamic-influence coefficients

compatible with the wing's modal-coordinate system. This transformation

uses a matrix of constants EIj prescribing the values of each mode shape 1

at the x,y coordinates of control point j.
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El• ( lyj )  (19)

A similar transformation is needed to generalize the forces occurring at

the panels' force points. This makes the forces compatible with the modal

degrees-of-freedom. This generalization is made using a modal

transformation matrix E evaluated at the quarter chord locations of the

panels. For simple harmonic motion and N modes, the resulting generalized

forces are now functions of the coordinates aI(t).

=~ [Elt [A][E] fa(t)I (20)

1/4 chord 3/4 chord

Remember that the al(t) terms are the time-dependent coordinates for the

modal degrees-of-freedom. They must describe simple harmonic motion so

that the doublet-lattice influence coefficients are applicable. Equation

20 is simplified to represent the aerodynamic forces for the equations of

motion.

I(t1 [A] 1a(t~ (21)

The complex constants for A are calculated for a chosen value of reduced

frequency k and Mach number using the doublet-lattice computer program.

The doublet-lattice method just described can be applied to lifting

surfaces of general shape. This suggests that it should be applicable to

the forward-swept wing geometry used here, and its capability to represent

forward sweep is confirmed by wind-tunnel correlations in Appendix C. The

previous developments can provide only sinusoidal forces for a chosen k

using the doublet-lattice method. The PadA Approximant method is xvced to

extend the results to provide damped-motion wing aerodynamic forces.

The calculations of the polynomial coefficients for the Pad

Approximants are done after the sinusoidal forces are generalized into the
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modal degrees-of-freedom. The generalized forces are smooth functions over

the wing planform and provide proper descriptions of the wing's motion with

only a small number of degrees-of-freedom. By using this reduced number of

degrees-of-freedom, the least-squares fitting process is kept to a minimum.

The first step in the two-step fitting process is the calculation of a.%

unique polynomial (equation 14) that represents the variation with s (as

defined by k) of each generalized force coefficient. This variation spans

the range of k represented in the 20 values of k from the doublet-lattice

calculations. Since the stability analyses here must find divergence (a

zero frequency instability) as well as flutter (a non-zero frequency

instability) the range of k needed for the Padd fitting begins at zero and

increases until it encompasses the expected flutter frequency. At this

point there are N x N denominator polynomials in the Pad4 Approximants.

This large number of denominators greatly complicates the stability

analyses in the Laplace domain and is not necessary.

As a second step in creating the Pad4 Approximants, the coefficients

of the denominator polynomials from the first least-squares fit are

averaged together to produce coefficients for a single polynomial. This

polynomial then serves as the common denominator for a new calculation of

the Pad6 Approximants. Each influence coefficient of the generalized

aerodynamic forces is approximated again for a second time by functions of

the form of equation 14. This second time the least-squares fitting of the

20 sets of aerodynamic forces is made with the denominator of each Pad4

Approximant held constant to the common denominator. The results provide

generalized aerodynamic influence coefficients with unique numerators but

with a common denominator polynomial. The resulting matrix of polynomials

can be organized into an A matrix as shown in equation 22 for ease of

manipulation.

3 3"...

JAI 52&=l
1 (P 3NlS .PO (P'3N .@ P (22)

2 3+ 2+. ]

(1./( 2 s +QIs + l ' )) [ [P 3 Is +[P2 ]s  "+[P
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The generalized forces are now available for damped motion as described by

the transformed coordinates at

=[Ia~ (23)

The quality of Pad Approximant representations of the generalized forces

can be measured by comparing generalized force terns calculated by the

approximations and those calculated directly using the doublet-lattice

method. In Table 1, this comparison is made for two generalized force

terns, A and A' at a series of reduced frequencies. This level of

agreement is acceptable and found in all the generalized force terms. Not

only do the Pad6 Approximants agree well with other prediction methods for

sinusoidal motion, the wing equations of motion using the Pad6 Approximants

predict stability characteristics that agree well with those found by

experiments. In Appendix C, correlations are made with wind-tunnel model

experiments. Not only do these equations properly predict aeroelastic

flutter and divergence, but these equations also provide insight into the

explosiveness of a particular instability. These model correlations

suggest that the methods used here can be used with some confidence.

Before improvements in stability using active feedback control can be

investigated however, control surface effects must be added to provide the

stabilizing forces.

Control Surface Aerodynamic Forces

In the previous section, the formulations for the aerodynamic forces

caused by general motions of the wing are described using Pad6

Approximants. Added to these forces are those created by the deployment of

leading- and/or trailing-edge flaps. These control-surface forces will be

used to stabilize flutter and divergence, and the calculation of these

control-surface forces is described next. These control-surface

aerodynamic forces are calculated in similar ways to those forces resulting

from general lifting-surface motion. The exact relationship between the

flap deflections and the lifting-surface motions will be defined in a later

section by the control laws of the feedback circuits.

29
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Control surfaces for the forward-swept cantilever-wing configurations

are located on the trailing- and leading-edges of the wing tip as shown in

Figure 5. The deflection angles of 0 and J for the trailing- and

leading-edge flaps respectively measure positively about the hinge axis for

the aircraft's starboard side wing as shown in the section cut of Figure 5.

The control-surface influences on the wing's airloads are calculated using

the same set of aerodynamic influence coefficients from equation 18 as were

used for the wing motion. The control-surface motions prescribe downwash

velocity requirements similar to those defined by the general motion of the

wing. Forces on the wing due to control-surface deflections can then be

calculated by combining the downwash due to their deflection and the wing

influence coefficients a This wing downwash due to the control surfaces
ii.

is calculated as follows. At a control point j in the planform, the

downwash velocity, wi, is calculated from the flow that is deflected by the

flap when it is rotated. This vertical velocity component of the flow is

created by the combination of deflection of the frees tream flow with the

flap and the rotation of the control point about the flap's hinge line.

w = Utani + dj
j (24)

A similar expression is used for the leading-edge flap, and the term d is

the radius from the flap's hinge line to the control point J. Since the

aerodynamic influence coefficients from the doublet-lattice computer

program are defined only for simple harmonic motion, the expression is

written in terns of the reduced frequency of sinusoidal flap motion.

w. = UO + iU A'.k/b
3 (25)

= U0l. + id k/b)O

This downwash is determined for all doublet-lattice panels contained in the

planform regions of the flaps. In the flap region, the panels for the

cantilever wing examples are shown in Figure 4. The forces due to the

flaps can be calculated in a similar manner as that for general wing

motion.
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IF(t) = [ 0]

flap w t

0 (26)

The vector expression W contains the downwash specifications (eqtation 25)

for each control point in matrix form. The deflection angle has been

factored out to make equation 26 easier to combine with the feedback loops.

To be compatible with the equations of motion, the flap forces are

generalized into the modal coordinate system using the E matrix evaluated

at the quarter chord points of the panels.

(t E] [A11
iflap 1/4 chord (27)

SA

Equation 27 provides generalized forces over the entire wing caused only by

flap oscillations at a reduced frequency k. Pad6 Approximants for these

generalized forces are then calculated using the sinusoidal forces from

equation 27 at each of the k values. These Pad6 Approximants are created

by the least-squares fitting described earlier. However, the fitting for

the control surface forces uses as a fixed denominator the one used for

approximations in equation 22. The resulting matrix equation for the flap

forces has a common-denominator polynomial in the Pad6 Approximants that

permits them to be easily combined with other aerodynamic forces in the

cantilever-wing equation of motion.

I 3 16s  + " O1

Q 2 E, 1 s~l ~ +flap
33
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A similiar development provides generalized forces caused by the

leading-edge flap.

In the next section, the control laws are defined, relating the flap

angles to the measured motion of the wing. By properly selecting these

laws, the control surface forces just developed can be used to stabilize

both flutter and divergence of foward-swept cantilever wings. .

Feedback Control Laws

In this dissertation, active control is applied to increase the speed

at which the aeroelastic instabilities occur. The stabilizing forces of

the active-control system are created by the aerodynamic-control surfaces

as they are activated according to measured wing motion. Feedback loops

contain the links (or control laws) between the flaps and the measured

elastic displacement, velocity, and/or acceleration used to activate the

flaps. The control laws can be written as equations containing constants

that represent simple gain amplifiers, where these amplifiers define linear

relationships between wing motion and flap deflection. When these

constants (or gain values) are properly chosen, the feedback loops

containing them are capable of stabilizing the aeroelastic responses of the

wing.

Figure 6 contains the block diagram for the wing feedback control

system. Equations relating the wing motion and forces acting on it have

been previously .iveloped which include forces due to control-surface

motion. These force and motion relationships are contained in the transfer

functions of the wing or "plant" block. The wing block has input variables

as control surface dflections 0 and 4 and output variables as measured wing

motion at two spatial locations h1 and h2 . The relationships between the

wing output and the actuator inputs are depicted in Figure 6 as the Hii

blocks for the control laws. The signal paths containing the Eij blocks

represent the feedback network for the wing aeroelastic stability

compensation. The (xact types of motion sensed at the two wing locations

are prescribed in the transfer functions Hij. As measurement signals, the

feedback loops use the wings vertical (out-of-plane) motion. The

particular dynamics of a given type of sensor device measuring this motion

': , .. .. . .. _ . . .. - -. . .. . ..-- .. . . .. . .' ... ... .:.... :,.- ,,. ,.~--.-.:i::','::



.7

600
-4'-4

355

.r:. r



are not included in the mathematical modeling of the feedback loop.

However, devices exist that could be used to provide the necessary

measurements, including strain guages, rate gyros, accelerometers, and

optical sensors. Nevertheless, only elastic motion of the cantilever wing

is measured. For applications of these control laws to actual flying

hardware, care is required to cancel out rigid-body motion or

control-surface inputs supplied by the pilot. The cancelling of these

unwanted measurements can be done using signals from rigid-body motion

sensors located near the aircraft's center-of-gravity, or various

low-freqency filters can be included in the feedback loops.

The measured elastic motions of the wing can be represented

mathematically at the sensor locations using equation 1, when it is

evaluated at the x,y locations for the sensors. In the matrix notation of

the transformed complex plane, the measured motion can be written in terms

of the natural modes and transformed coordinates.

=( uNxu {x :1 (29VY "" VY 2Y

aN  (29)

N

= El i
E2

At these locations the velocities and accelerations are just the

derivatives of h(x1 ,y1) and h(x2 ,y2 ). In the transformed plane, these

motions are a function of s.

I,--,(30)

EE
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h2 E 2

The transfer functions Hij using these wing-motion measurements are

polynomials of the variable s. The real coefficients Kij I of the

polynomials represent linear amplifiers. Their sign determines the sign

sense of the signal going to the flap actuators. Together they define the

actuator signal derived from measured elastic displacements, velocities,

and accelerations. Since the coefficients of s are constants, they are

equivalent to simple gain amplifiers that scale the measured displacements,

velocities, and accelerations. These measurements correspond to the powers

of s. An example of these functions, Hw, is given in equation 32.

=H h
2 1

= (Kd l +SKv 1 +VS2 Kol)h (32)

The notation uses for the gain values d, v, and a as subscripts for gains

associated with displaclements, velocities, and accelerations measured at

the sensor locations. This notation facilitates references to specific

gain values in the presentation of results. Thus, the actuator input

signal for the trailing-edge flap, 4, contains contributions from the
hi, velocity shl, and acceleration s measured at sensordisplacementh 1 1,1

location 1. These measurements are relatively weighted by the gain

constants K, KvO 1 , and K Combining these transfer functions with

the sensor measurements provides the stabilizing flap angles and 4 in the

modal coordinate system.

SP02~][ El (33)

There is also an actuator block for the feedback loops of Figure 6. The

trarfer function of this block defines the actual movement of the flap (0

for the trailing-edge flap) using the signal input to the flap actuator (4
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for the trailing-edge flap). The transfer function used is given in

equation 34 and represents that used for the F-16 flutter-suppression

studies of Reference 23.

(20. 34)

s+20.

Note that the corner frequency for this actuator is 20 rad/sec and

represents reasonable capabilities in state-of-the-art electro-hydraulic

actuators. In addition to the flap angles resulting from equation 33, this

transfer function of the flap actuator must be included in the feedback

loops.

Applied to the cantilever wing, the stabilizing forces of the

feedback-control system can be calculated using the flap angles of equation

33 and the forces that result from them (in equation 28). The

actuator-transfer function must be included in the loops to represent

correctly the actual time-dependent deflection angle of the control

surfaces.

s+20. E(35)

flaps s

The stabilizing forces are then written as influence-coefficient matrices

of complex constants that are then post-multiplied by the wing's modal

displacement vector and its time derivatives. Now the stabilizing forces,

including the feedback loops, are compatible with the wing equations of

motion. When the gains in the Hij compensation block are properly

adjusted, the wing is more aeroelastically stable. To determine the

aeroelastic stability, the next section describes the solution method used

on the resulting cantilever wing's equations of motion.

Stability Solution Method

The aeroelastic stability of the cantilever wing is determined from n

the transformed equations of motion just described by subjecting the wing

to an impulse disturbance. With this type of disturbance, the system's

38
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stability can be described, using only the roots of the characteristic

equation obtained from the equations of motion (Ref. 24). These roots

specify the poles of the system's response in the complex plane and can be

found by identifying values that make the determinant of the characteristic

equation go to zero.

The stability of the lifting surface is indicated by the real parts

of these roots of the characteristic equation. As long as all of the roots

have negative real parts, stability is implied. Neutral stability is

acquired when any of their real parts go to zero. Negative stability (or

instability) occurs when any of the real parts of the roots of the

characteristic equation become positive. Changing parameters in the

equations of motion and thus the characteristic equation (such as an

increase in airspeed or an amplifier gain) causes changes in the roots. By

progressively changing one of these parameters, loci of the roots in the

complex plane can be developed corresponding to those parameter changes.

The root loci can then be used to calculate the parameter values that will

provide roots with the most desirable characteristics for wing stability.

Usually the optimum parameter values will result in roots with maximum

negative real parts. Later, in presenting results, the loci of these roots

(caused by parameter changes) in the complex plane are used to illustrate

the effects of parameter changes on the wing stability.

A direct method to calculate the characteristic roots can be used when

the Padd Approximants provide the aerodynamic-force formulation. The Padd

Approximancs allow the equations of motion to be written as a collection of

constant-coefficient matrices multiplied by the displacement vector and its

derivatives. When put in first-order form, the calculation of the roots

becomes a standard eigenvalue problem involving complex-constant matrices.

When the homogenous cantilever wing equations of motion are organized

in first-order form, the degrees-of-freedom and their derivatives are

combined in a new vector a This vector contains states defined by the

degrees-of-freedom and their derivatives, up to the fourth time derivative.

This fourth derivative is dictated by the third-order denominator
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polynomials in s found in the generalized forces. These polynomials are

created from the denominators of the PadA Approximants and that of the

actuator. When these are multiplied by the accelerations of the inertia

terms, a fifth derivative in time is created.

a a

a a

The matrix contains only complex constants that include the terms of

mass, stiffness, feedback compensation, and aerodynamic force found in

their influence coefficient matrices. In the transformed plane, equation

36 exhibits the form for eigenvalue problems.

AA

(37)"-

[A] - sJi] 0 ;

The characteristic determinant for equation 37 becomes equation 38. "

AA

[ M -0[! (38)

The roots s of this determinant (which are the eigenvalues of equation 38)

describe the stability of the cantilever wing.

The eigenvalue problem of equation 38 can be solved using exsistng

computer programs (Ref. 25) written for problems involving nonsymmetric

complex matrices. The mathematical bases for the computer routine used in

this research are outlined in Reference 26. The matrix is first put in

Hessenberg form (equation 39) using a sequence of matrix reflection

operations called Householder's method.
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Hessenburg 4N(

A

0 0 5N-1 5N-1 SN 5N

A series of similarity transformations in the QR-algorithm puts in an

upper triangular form with the eigenvalues on the diagonal.

While freestream velocity and all the feedback gains must be fixed to

define completely A, the interval over which any of these parameters is

varied (to develop loci of the roots with that parameter change) is

completely arbitrary. Starting at zero velocity or zero feedback gain is

not required, and all the eigenvalues are calculated each time to avoid

overlooking a particular branch of the root loci. This is especially

useful for any fine tuning of feedback gains. To develop the loci of

characteristic roots caused by variations in a particular parameter (such

as flow velocity), a series of values of that parameter is chosen. The

number of parameter values and the intervals between them required to

construct root loci are dictated only by the parameter range of interest

and the ease in following the changes in eigenvalues. The recalculation of

A as that parameter is changed is simple and fast. The expensive and time

consumming aerodynamic force calculations using the doublet-lattice

procedure must be made only once and do not have to be repeated.

With the control surface forces and the feedback loops that drive them

included in the wing equations of motion, the study of improved aeroelastic

stability of forward sweep can begin. The following study focuses on two

wing examples that illustrate possible applications of active control for

forward sweep aeroelastic instabilities. In this next chapter the two wing
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examples are examined with 96 possible feedback loops. Several show

promise of improvement in wing stability. Two of these feedback loops are

examined in detail.

"' r
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III - WING ACTIVE CONTROL STUDIES

In this chapter, the application of active controls to forward-sweep

is illustrated with two forward-swept wing examples. The goal is to

improve their flutter and divergence characteristics. A gain-parameter

root-locus for each combination of control surface, sensor, and gain sign

is calculated. These loci are used to determine the best feedback loops

for the improvement of flutter and divergence. Several plots of these root

loci are included to illustrate the effects of particular gain changes.

Associated velocity root loci are also presented to show the improvements

or losses in stability for selected feedback loops. The results show that

even with the small flaps used here, active control can improve aeroelastic

stability.

The cantilever wings used as examples are derived from a single

forward-swept configuraton. This wing configuration is representative of

the first generation of forward-swept wing designs in the high g fighter

category. The basic geometry is derived from example designs in Reference

6. This geometry was chosen to make the application studies of this

research reprsentative in weight and basic geometry of actual flight

hardware. The two wing examples use the same external geometry as shown in

Figure 3. These wings are designed for an 18000 pound aircraft performing

an 8g symmetric pullup at .9 Mach number at sea level altitude. The flow

condition used in the doublet-lattice analysis for the Padd Approximants is

.9 Mach number at sea level. However a match-point analysis is not

performed for the critical airspeeds calculated in the following examples.

This match-point analysis would correct the critical velocities to the

proper Mach number and altitude. The match-point analysis would be

included in the detailed calculations made when these control laws are

applied to actual hardware.

The active control system uses one or both outboard flaps shown in

Figure 3. The hinge lines are at the 15% and 83% chord lines. The 15%
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chord line is the leading-edge spar location for the wing's structural box.

This location is necessary for attachment of the actuators and hinges. The

aft hinge line is half way between the structural box's trailing-edge and

the planform trailing-edge. This hinge line was chosen so that the

trailing-edge flap would be approximately the same size as the leading-edge

flap. The control surfaces are used in several combinations, prescribed in

four different configurations. Configuration A uses only the trailing-edge

flap. Configuration B use only the leading-edge flap. Configuration C

provides equal deflection of both the leading-edge flap and the

trailing-edge flap. Configuration D provides for a positive deflection for

the trailing-edge flap and an equal but negative deflection for the

leading-edge flap. Using these last two control surface configurations,

the desirability can be examined of a control force that resembles either

an aerodynamic torque (Configuration C) or an aerodynamic plunge force

(Configuration D).

The wing-motion sensors are located on the periphery of the structural

box at its mid-plane in depth. One location is the junction of the tip rib

and leading-edge spar for the wing box. The other location is on the

trailing-edge spar directly downstream from the first location. Figure 7

shows these locations on the wing planform. Like the control surfaces, the

sensors are used in four configurations. The sensor of Configuration A

produces signals only from the trailing-edge location. Sensor B produces

signals only from the leading-edge location. Sensor C adds the signals

from the leading-edge and trailing-edge locations. Sensor D subtracts the

signal of the leading-edge location from that of the trailing-edge

location. The first two configurations yield sensor signals from locations

near the control surfaces. The latter two configurations yield signals

that represent primarily plunge motion (Sensor C) or pitch motion (Sensor

D) at the span station of the sensors. However, configurations C and D are

not intended to selectively recover a particular vibration mode from the

wing response, as has been done in some active-control investigations (Ref.

27). In fact, a major concern that suggests these latter two sensor

configurations is avoidance of single-sensor locations at node lines of the

44
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low-frequency modes. Sensors C and D better ensure the observability of

all modes. 
N

Three kinds of sensors can be used with any of the location

configurations. These sensors would be displacement, velocity, or

acceleration-measuring instruments. The kind chosen for each feedback loop

dictates the control law used. The measurement signals provided by the

sensors are scaled by linear amplifiers (gain constants) and directly input

to the flap actuators. No other signal processing is done, such as

differentiation or integration of the sensor signal.

The different combinations of configurations in sensor location and

flap are examined with a gain-parameter root locus, using each kind of

sensor. The root loci are calculated using both negative and positive

feedback. For a given wing box design then, 32 possible combinations (4

sensor configurations, 4 flap configurations, and 2 signs for gain values)

of feedback circuits are examined. These gain-parameter root loci are

calculated at a fixed speed that corresponds to the most critical

instability. Using the gain-parameter root loci, gain values are chosen

for wing stability improvements based on improvement in the characteristic

root locations. The gain values showing promise are checked using velocity

root loci with these feedback gains in the feedback loops. Each of the 32

gain-parameter root loci is used with the displacement, velocity, and

acceleration sensors to provide a total of 96 possible feedback loops for a

given wing example case.

Two different wing structural-box designs, designated Case 1 and Case

2, are used for the wing feedback-control examples. The structures in

these wings are devised to produce different relative airspeeds for the

aeroelastic instabilities. The Case 1 example uses a wing box

aeroelastically tailored to have its divergence airspeed Ud at a lower

value than for flutter Uf. The Case 2 design has the relationship of Ud

and Uf reversed. But the two cases are identical in external contours,

flap locations, sensor locations, and non-structural mass distributions.
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Using aeroelastic tailoring of the thickness and fiber directions in the

composite upper and lower wing-box covers, the flutter and divergence

airspeeds were brought within 400 ft/sec of one another. Effort was made

in both cases to have flutter and divergence airspeeds relatively close

together. This similarity of airspeeds permits monitoring of the positive

or negative effects on a secondary aeroelastic instability while attempting

the control of the most critical aeroelastic instability. While flutter

and divergence usually have widely separate critical airspeeds, the close

proximity in aeroelastic instabilities of these examples can occur in

actual aircraft designs when using automated design techniques that employ

optimization alogorithms. These automated techniques closely balance

various design requirements while minimizing structural weight. This

balance often specifies both Ud and U as being just outside the aircraftd f
operating envelope.

The results for the stability study are presented in graphical form

using root loci plots. These loci trace the movement of the characteristic

roots in the complex plane. As a selected parameter is changed, such as an

amplifier gain or freestream airspeed, the characteristic roots of the wing

equations of motion also change. The loci of these roots provide a

graphical way of interpreting the effects a parameter change can have on

wing stability. The figures in this chapter show only the upper left-hand

portion of the complex plane. Only the upper portion must be shown because

the complex conjugate property of the characteristic roots make the upper

and lower portions symmetric about the real axis. Only the left half-plane

is shown because the subcritical root values are of prime importance.

Thus, only the negative (sub-critical) values of the real parts of the

characteristic roots need be plotted. The root loci plots present either

velocity or gain parameter changes.

The velocity root loci describe the root movements as the freestream

airspeed of the wing increases. All other wing parameters are held

constant. When a wing root displays a left-to-right crossing of the

imaginary axis, the damping of that root has changed from positive to

negative. The airspeed corresponding to this change is the critical
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velocity for stability. Similar loci can be shown for changes in a gain

value rather than freestream velocity. These plots can be useful in

determining gain values that indicate large damping values. Gain settings

that provide large negative real parts for all of the roots usually

increase wing stability.

Feedback control design using the root locus methods is an older

"classical" technique. More modern methods that automate the search for

optimum gain settings could be used. However, one of the goals of this

research is to develop some basic understanding of the effects that

particular active control laws can have. This can be observed better with

the individual parameter gain root locus methods rather than modern optimal

control methods. Therefore, the following case studies use only the

classical root locus approach.

Case I Study
This wing design has U lower than Uf. Figure 8 is the velocity root

d
locus for Case I with no active control present. The origin of each locus

is the zero velocity condition and is found on the imaginary axis. The

imaginary parts of these origin points correspond to the natural

frequencies of the vacuum vibration modes for Case 1. The first four roots

show the vacuum vibration frequencies for mode I at 5.21 rad/sec, mode 2 at

23.22 rad/sec, mode 3 at 27.67 rad/sec, and mode 4 at 58.32 rad/sec. The

shapes of the loci for these modes fall into the expected classical

categories for high aspect-ratio wing structures. Mode I can be described

as a first-bending mode shape. Mode 2 is a second-bending mode. Mode 3 is

the first-torsion mode. Mode 4 is the third-bending mode.

As the velocity is increased from 0 to 2200 ft/sec, the critical

divergence and flutter airspeeds are identified. The mode I root defines

the divergence velocity as this root crosses the imaginary axis. This

crossing occurs at a freestream airspeed of 1161 ft/sec. Roots at the

divergence velocity are noted in all the root loci by the solid round

symbol. In both wing examples, the first-bending mode corresponds to the
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lowest-frequency vibration mode, and the eigenvector (or wing deformation

shape) of the divergence condition closely resembles the first bending

mode.

The most critical flutter airspeed is defined when the mode 3 locus

crosses the imaginary axis at a freestream airspeed of 1560 ft/sec. Roots

at the freestream velocity of flutter are noted on all loci with the solid

square symbol. As in all other examples, the critical flutter airspeed is

defined when the root corresponding to the lowest-frequency torsional mode

crosses the imagnary axis.

The higher frequency modes continuously gain damping as velocity is

increased, with no tendency to return to the imaginary axis and define

other aeroelastic instabilities. For all stabilitiy calculations (unless

specifically noted otherwise), the basis for the calculations is the first

four vibration modes. For Case 1, the locus of mode 4 always gained

damping with airspeed and produced nothing more than a progressively higher

damped response. For this reason, this mode is not plotted. The following

results show the effects that the addition of active control has on Case 1,

and are organized according to the kind of sensor used in the feedback

loops.

Displacement Sensing

Active control, using displacement sensing, is the first type of

compensation presented, and is examined for all 32 combinations of sensor,

flap, and gain signs. Several gain root loci are presented to illustrate

the effect of this kind of feedback.

All of the gain root loci (for positive feedback using

elastic-displacement sensing) show significant degradation in the stability

of the divergence critical root. In this study, positive displacement

feedback cannot be used to improve the divergence airspeed for the

combinations of signal sense in displacement measurements and flap

deflection angles. Even very small values of positive-displacement sensing

cause the divergence critical mode I root to go unstable.
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Negative-displacement sensing is successful in improving the critical

divergence airspeed. The gain-parameter root locus plots for this feedback

exhibit three general patterns. The root-loci patterns are characterized

by interaction between the divergence critical roots of the first mode and

the root from the control surface actuator.

With the addition of the feedback loop to Case 1, a set of four

characteristic roots appears, in addition to those of the structure and
-1

aerodynamics. These four roots are all located at the 20 sec position

(in an overlaid fashion) on the real axis of the complex plane and are due

to the denominator of the actuator. As the gain parameter is changed from

zero to large negative values, one of these four control roots moves in a

positive direction. At the same time, the critical divergence root moves

in a negative real direction. This increase in the damping of the critical

divergence root delays the onset of divergence to a higher airspeed. The

movement of the other roots in the root locus defines the different

patterns discussed below.

In Figure 9, the first pattern (of three patterns) in the root loci is

seen, resulting from gain changes with displacement sensing. The

critical divergence root and control root coalesce to form a complex

conjugate pair. This complex pair defines a flutter instability, and

involves the root that had defined a divergence instability before

application of active control. In this complex pair, the higher modes show

little movement with increased gain. The second pattern is illustrated in

Figure 10 and differs from the first in that mode 2 quickly goes unstable

in flutter. The third pattern has the conjugate roots from mode I and the

control surface remaining stable. Figure 11 shows an example of this

pattern. Here increased negative gain forces mode 3 to move towards

instability. This third root-locus pattern corresponds to the best

improvement in divergence with active control. It is accomplished using

wing-displacement sensing.
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Figures 12 through 16 show a series of velocity root loci using the

Sensor D/Flap B configuration. The loci are calculated using a different

gain level for each figure. The root locations calculated at three of

these gain values are noted on the gain-parameter root locus of Figure 11.

Velocity root loci for these different gain levels are shown in Figures

12-14. With the Sensor D/Flap B combination, a gain of -3 rad/ft produces

the velocity root locus of Figure 12. In Figure 12, the velocity at

divergence increases to 1345 ft/sec while the velocity at flutter drops to

1480 ft/sec. At this gain level mode I moves to the real axis before

crossing the imaginary axis. When the gain is increased to -6 rad/ft, as

in Figure 13, the critical velocities are equal (1448 ft/sec) for the

crossings of mode 3 (for flutter) and mode 1 (for divergence). As the gain

is further increased to -9 rad/ft, the break-in point for the roots of mode

I move to the positive side of the real axis. Therefore, as shown in

Figure 14, mode 1 now prescribes a secondary flutter instability rather

than divergence. But the most critical flutter instability is still

defined by mode 3. However, it now crosses at an even lower velocity of

1389 ft/sec.

When displacement sensing is used in Case 1, the -6 rad/sec gain value

provides the best improvement in velocity of the most critical aeroelastic

instability. Raising the divergence velocity is accomplished, however, at

the expense of lowering the most critical flutter velocity. This trade in

critical velocities suggests that large increases in divergence speed for

Case I might be possible if the flutter velocity had been much higher.

Fortunately, high flutter velocities are typical in the forward-sweep

designs using conventional materials, as suggested by Figure 1.

The velocity root loci in Figures 15 and 16 show the results of

further increases in gain. When the negative gain is further increased,

the flutter speed continues to drop. When the gain reaches -15.5 rad/ft,

mode I does not go unstable at all, but mode 3 indicates a still lower

critical velocity for flutter at 1316 ft/sec.
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The previous root loci plots used a basis of four modes. To check the

sensitivity of all the analyses to the number of modes used as a basis,

both in describing the essential responses of the wing and in the Pad6

fitting process, a new stability calculation is made. This time 10 modes

are used rather than 4. The gain Kd is again set at -6 rad/sec in the

Sensor D/Flap B configuration. Using 10 modes as the basis, the flutter

and divergence speed are calculated to be 1432 ft/sec, a change of only 1%.

Figure 17 shows this root locus. Since the 10 mode velocity root locus did

not significantly deviate from the 4 mode velocity root locus, the

four-mode analyses used for the gain-parameter root loci are considered to

be valid, and the sensitivity of the calculations to the basis size is

small, at least for Case 1.

Velocity Sensing

The second kind of sensor investigated measures vertical velocities

rather than displacements. The same feedback loops, types of gain, flap

configurations, and sensor configurations are used with the velocity

sensors as are used with the displacement sensors. A similar set of

gain-parameter root loci is calculated in search of the best

velocity-sensing feedback loops.

Depending on the sign of the gain amplifier, two basic root-loci

patterns emerge for velocity sensing in Case 1. These patterns are

illustrated in Figures 18 and 19. Using positive feedback, Figure 18 shows

the divergence critical root of mode 1 combining with the control (or

actuator) root. For even small values of positive gain, this combination

becomes unstable. Some loss of stability in mode 2 is also noted. Figure

19 indicates that negative feedback causes the control root to combine with

the most stable root of the mode I pair after they reach the real axis.

The other root of the mode I pair that is close to the imaginary axis

(divergence critical) shows little movement with changes in gain setting.

Neither positive nor negative feedhack of the velocity sensors changes

the critical divergence speed, no matter what gains are used. However, the
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flutter speed can be increased or decreased considerably using velocity

feedback. Examples of these changes can be seen in Figures 20 and 21. In

Figure 20, a positive gain of .4 rad sec/ft increases the flutter speed to

1660 ft/sec, but divergence is still at 1160 ft/sec. In Figure 21, the

gain is increased further to 2.6 rad sec/ft. In this case, mode I now

defines flutter at only 661 ft/sec. The airspeed, corresponding to a root

crossing of the imaginary axis on the real axis, is still 1160 ft/sec.

This airspeed is the same speed as U. for the uncompensated wing, but the
d

axis crossing is now from negative damping to positive damping.

Acceleration Sensing

Using the cantilever wing, the third kind of sensor measures

accelerations at the sensor locations. The same combinations of flap,

gain, and sensor location are used for accelerations as those used for the

displacement and velocity calculations. When acceleration sensors are used

(as with the velocity sensors), little effect is seen on the critical

divergence condition. There is some effect, however, on the critical

flutter airspeed.

Using the Sensor A/Flap B configuration, Figures 22 and 23 demonstrate

acceleration sensing's lack of effect on divergence. In Figure 22, the

parameter-gain root locus of Sensor A/Flap B show the actuator root

combining with the most stable of the mode I roots. These roots then go

unstable as conjugate pairs. When the gain is increased further, this

conjugate pair breaks in on the real axis on the positive side. One of the

pair then moves back towards the original divergence-critical mode 1 root

that has not moved with gain change. In this same plot, the higher modes

of the Sensor A/Flap B configuration lose stability. Figure 23 shows the

velocity root loci of Sensor A/Flap B when acceleration sensing is used in

the feedback loop. Even though the sub-critical response of all the modes

has changed and the flutter speed has been significantly lowered, the mode

I divergence condition still occurs at 1160 ft/sec.

6* "



C4

L

aJ

c-.J 0

aA-

C.,C)

4-4 I

'- -L4

0

o co

0 -4

C) -4 0.

0 aJ40

oC-4em W~.

4 -4 -4

U,) %D Cl



c >

00 (0

1 --

',C"'

> 01

U,%

-
4  

-f

',. r 0

U. UJ U a'.

.,o C 
-

0 2

,-4 4J

to -4

.

n 0-.4.0

,-4

.. 9]



a))

0 00

CC

-o44

0 "

ob
41 4

0&.

wC-,

o c

'41

CL 0
o. u
w ci

I- 0

CJ0
A-I



Mode 3 40

V 310 ft/sec

A 610 ft/sec

4U 9lte 10 ft/sec 3

Modee 1

-20 -100

C%Diverrg3 enc 116 Rot/LocsFrCs

Flt en1or A/lpBKec25rd e

a1

. ~ ~ ~ M d 1.. . . . . . .... . . . . . . . . . . . .



Summary of Case I Results

The results of the application of feedback control to this

divergence-critical wing example are summarized as follows. To increase

the airspeed at which aeroelastic divergence occurs, the use of velocity or

acceleration sensing is unsuccessful. Only elastic-displacement sensing

with negative feedback produces a significant increase in the divergence

airspeed. The use of any of the three kinds of sensors changes the loci

(and thus the subcritical response) of all roots. The velocity and root

participation of the most critical flutter instabilities are also affected.

The feedback-control configuration that most improved divergence also

significantly lowered the critical flutter velocity.

The most success in suppressing divergence occurs when the roots

defining divergence can be modified to increase the critical airspeed for

divergence until that airspeed just reaches the value of the most critical

secondary aeroelastic instability of flutter. The feedback configuration

that improves Case 1 the most is the combination of Flap B and Sensor D.

This flap and sensor combination (with negative feedback) suggested that

the mechanism most effective in improving divergence is a reduction in the

apparent lift-curve slope of the outboard section of the wing. The

location and relative signal signs of the sensors for the Sensor D

configuration provide feedback signals that emphasize movements

corresponding to increases in the section's angle-of-attack. Movement of

Flap B tends to change the apparent angle-of-attack of the outboard wing

sections. When negative feedback is used, the flap tends to lower the

local angle-of-attack as the wing box section increases in angle-of-attack.

The control effect on the wing's capability to produce lift can be

summarized as a reduction in the apparent lift-curve slope of the outboard

portion of the wing. This trend in lift-curve slope also agrees with those

found in simple airfoil examples (Ref. 2).

Case 2 Study

For the e>:ample wing in Case 2, Uf is lower than U . The external

geometry for Case 2 is the same as that used in Case 1, but the structural
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wing box has been tailored to make Uf lower than Ud, providing a

contrasting example to that of Case 1. Mode 1 is the first wing-bending

mode, with a frequency of 5.09 rad/sec. Mode 2 is the first torsional

mode, with a frequency of 19.75 rad/sec. Mode 3 is the second bending mode

at 25.32 rad/sec. Mode 4 is the second torsion mode at 47.75 rad/sec. For

reference, recall that the first torsion mode of Case 1 is mode 3 (rather

than mode 2 for Case 2). Also mode 3 of Case I has a higher vacuum

vibration frequency than that found in mode 2 of Case 2. These differences

in their torsion modes correspond to the lower U found in Case 2 versus
f

Case 1.

At the aeroelastic instabilities for Case 2, the velocities are shown

in the velocity root locus of Figure 24. In this root locus, a flutter

instability is predicted from the crossing of the imaginary axis by mode 2

at a freestream airspeed of 960 ft/sec. The divergence condition is again

predicted by the mode 1 crossing (with no imaginary part) at a velocity of

1281 ft/sec. Note that the mode 1 break-in point is much more negative

than that found in Case I and occurs to the left of the visable range of

the negative real axis shown in Figure 24. Mode 3 also shows some loss of

damping when the velocities reach the higher values. The other modes

merely gain damping with airspeed.

Displacement Sensing

The sixteen combinations of sensor and flap are again used to examine

displacement sensing. The airspeed used for gain-parameter root loci is

960 ft/sec, except for some specifically noted examples. Based on the

effect in the divergence speed of Case 1, positive gain is not examined for

Case 2 when using displacement sensing. Therefore, only negative-feedback

examples are discussed for Case 2 when displacement sensing is used.

Negative gain applied to displacement sensing of Case 2 provides three

basic shapes for the gpin-parameter root loci calculated. In the first

form, mode 2 and the control root go unstable. The second form differs

from the first in that the mode I and mode 2 roots go unstable while the

71



7 W. T- Or W-1 -- V-.ip F--- W

C0

wa

000

421

00 --

-4 4-4

C14

424

bo 0) ~-

0

oM

'-4 W)

0
.-4 0

0 >

(C4

(.4

- bo

72



control root gains stability. In the third form, mode 2 increases in

stability while the control root loses stability.

In Figure 25, the second form in gain-parameter root loci is

exhibited. The feedback configuration uses the Sensor A/Flap B p

combination. Velocity root loci are calculated using two significantly

different gain values with this flap and sensor configuration. With a

small gain value of -.05 rad/ft, the velocity root loci of Figure 26 show

only slight improvements in the flutter- and divergence-critical

velocities. When the gain is changed to -15.55 rad/ft, a considerable

improvement is made in the divergence-critical roots of mode 1. This

velocity root loci is plotted in Figure 27. However, flutter now occurs at

a much lower velocity, 610 ft/sec, and is defined by roots of mode 1 rather

than of mode 2. With this feedback loop, the divergence instability is not

indicated. In Figure 28, the possibility of a useful intermediate value of

gain is examined for the Sensor A/Flap B configuration, a gain of -1.

rad/ft. The flutter-critical mode 2 roots remain essentially unchanged,

but the divergence condition from the mode I roots never materializes. The

mode I roots remain oscillatory and gain damping.

It should be noted that another approach can be employed when using

gain-parameter root loci to define gain values and desirable sensor/flap

combinations. The root loci can be calculated at freestream flow

velocities higher than the lowest critical velocity. A single example of

this approach for the Case 2 wing is shown in Figure 29. The freestream

velocity is 1160 ft/sec for this gain root loci. Therefore, the roots of

mode 2 (which crossed the imaginary axis at 960 ft/sec) are well into the

negative damping region of the complex plane. These root loci for the

Sensor D/Flap A configuration suggest it is capable of moving the mode 2

flutter roots back into the positive-damping region. However, when the

velocity root loci are calculated using this control law the control root

becomes unstable before these flutter roots become stable. In general,

using a flow velocity that is higher than the most critical flow velocity

(when calculating a gain-parameter root locus) was not useful. This lack
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of success results, in part, from the non-linear effect of velocity that is

a consequence of the powers of the s parameters. Therefore all other

gain-parameter root loci shown for Case 2 are calculated using a freestream

airspeed of 960 ft/sec.

For Case 2, no feedback-control loop using displacement sensing U

improves the most critical aeroelastic instability to a useful degree. As

in Case 1, displacement sensing affects divergence but is not helpful in

improving flutter.

Velocity Sensing

For the Case 2 wing, velocity sensing is examined for both positive

and negative feedback. All gain-parameter root loci are calculated using a

freestream flow velocity of 960 ft/sec, with several patterns of root loci

emerging. These patterns generally show that negative feedback improves

the stability of the actuator root, while positive feedback does not.

Typical of the first pattern is the rapid decrease in stability of the

roots of mode 1, while the control root moves in a stable direction. In a

second pattern (with negative feedback), the mode 2 root becomes unstable

at low negative gain values. Mode I shows some loss of stability in this

second pattern, but does remain stable. The control root also remains

stable. The third pattern is similar to the second pattern except that

positive feedback moves the control root toward instability. Pattern four

provides improved stabilities for the mode 2 roots, but causes both the

mode I roots and the control root to lose stability. The loss of stability

by the control root, however, is gradual. Significant improvements in the

stability of the mode 2 roots is possible before the control root goes

unstable. A good example of this last pattern is shown in Figure 30. Here

the gain-parameter root locus of the Sensor D/Flap D configuration suggest

that a positive gain of .15 rad sec/ft can be useful. At this gain

setting, about equal trades can be made in stability of the roots of mode I

and mode 2. For aeroelastic instabilities, this gain setting would allow a

similar trade in airspeeds to that made in the Case I divergence solution.
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Using a gain of .15 rad sec/ft, a velocity root locus for Sensor D/Flap D

is calculated in Figure 31. Note that while the flutter velocity moved

from 960 ft/sec to 1110 ft/sec (at the expense of some loss in divergence

airspeed), the improvement does not result in a significant improvement in

flutter. This lack of significant improvement is typical of improvements

available for the velocity-sensing feedback loops for Case 2, and,

therefore, velocity sensing is not really useful for Case 2.

Acceleration Sensing

Acceleration sensing provides several useful feedback loops for

stabilizing the roots of mode 2. In Figure 32, the gain-parameter root

loci for Sensor D/Flap A are plotted. Here the negative feedback from the

Sensor D combination is increased, and the roots of mode 2 move away from

the imaginary axis toward increased stability. At the same time, the roots

of modes 1 and 3 lose stability. With the gain set at -.05 rad sec 2/ft, a

velocity root locus (using Sensor D/Flap A) is calculated and presented in

Figure 33. Note that while the roots of mode 2 come close to the imaginary

axis, no crossing (and, therefore, flutter) occurs. The divergence

instability still occurs at 1280 ft/sec and cannot be improved with any of

the gain settings. This divergence airspeed then becomes the limit to the

amount of improvement in airspeed possible with acceleration sensing in the

Sensor D/Flap A combination.

Other feedback configurations offer possibilities for improving the

flutter-critical roots of mode 2. Using Sensor D, positive gain can

improve mode 2 when either Flaps C or D are employed. With negative gain,

Sensor D can be coupled to Flap B. The gain sign change is required for

Sensor D/Flap B because of the angle sense of the leading-edge flap

deflection. These other flap and sensor combinations, however, do not give

improvements in the divergence condition. Therefore, the ,aximum

improvement to the most critical aeroelastic instability remains at the

1280 ft/sec level. This maximum value is defined by the unchanged airspeed

of divergence and not by limitations on the effect possible of the

flutter-critical mode 2 roots.
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This limitation on improvements for Case 2, resulting from a low-speed

divergence condition, does not suggest similar limitations on wings with

more conventional velocity spacing between flutter and diveregence. The

improvements in flutter for any wing design, however, must not be sensitive

to small changes in the analysis. As a check on analysis sensitivity,

changes are made in the number of vibration modes used as coordinates in

the root loci calculations, and the Sensor D/Flap A configuration is

re-calculated using a 10-mode basis. This re-calculation is presented in

Figure 34. Note that unlike the calculations made with the 4-mode basis,

the roots of mode 4 move far enough over to the imaginary axis to touch it.

This condition indicates a potential problem for the feedback loop using

Sensor D/Flap A. It appears a new low-speed flutter condition has been

created using the feedback loop and involving mode 4.

The sensitivity problem just shown may be caused by two possibilities.

First, as more modes are included in the basis for the calculations, the

number of generalized forces increases, and the frequency range widens that

must be spanned by the Padt Approximants. Since the polynomials do not

change order, they must represent more information with the same number of

terms. Secondly, in Case 2, mode 4 is the second torsion mode rather than

another bending mode, as in Case 1. Modes with dominant torisiona] motion

define flutter instabilities in all the root locus calculations. With two

low-frequency modes capable of producing flutter, Case 2 has greater

potential for creation of secondary flutter modes with active control.

Summary of Case 2 Results

Application of feedback control to Case 2 Indicated that acceleration

sensing is the most useful type of measurement for forward-swept wings that

are flutter critical. The successful Sensor D configuration suggests that

the pitch-angle acceleration of the outboard portion of the wing provides a

useful signal for active control of flutter. Again, the limitation in

improvement in velocity of the most critical aeroelastic instability (in

this case, flutter) is the secondary instability (in this case,

divergence). Fortunately, acceleration sensing does not affect divergence
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instabilities. Thus, the available improvement in overall stability for

Case 2 is defined by how high Ud can be made in the uncompensated wing ol

design.

The calculations of flutter critical wings also indicate that more

care must be taken to ensure that all possible flutter modes from the

higher modes are accounted for. Unlike divergence (which appears to be a

function only of the first wing bending mode), flutter can be defined by

modes other than just the first torsion mode, and these higher torsion

modes can also produce flutter instabilities. If these higher torsion

modes have frequencies low enough so that the flap actuators can respond to

them, these modes must be monitored carefully in the analyses. They must

not be destabilized by the feedback loops aimed at a flutter condition

caused by a lower frequency mode. If flutter from higher modes cannot be

avoided, high frequency filters may be required to prevent these higher

modes from going unstable at low airspeeds.

These examples of active control applications using the Case I and

Case 2 wing designs are ment to suggest potential for active control of

aeroelastic instabilities. Actual forward-swept wing applications could

demonstrate even larger improvements in critical airspeeds, especially for

divergence. This can happen since forward-swept wings usually have very

-. high values for Uf even without feedback compensation. The actual

stability improvements will depend on the details of each application.

However some general observations and conclusions of active control for-

forward-swept wing aeroelasticity can be made and follow in the next

chapter.
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IV - CONCLUSIONS

The results of the cantilever wing examples suggest that active

control can be used to increase the critical airspeeds of flutter and

divergence in forward-swept wings. In order to determine the exact

increases in these critical airspeeds that is available using active

control, a match-point analysis would be required to match critical

airspeeds with their correct Mach number and altitude. This is not done

here because that level of detail is not needed to determine the trends

sought in this research. Consistant with this approach, improvements of

25% in Ud for one example and 30% in Uf are made for another example of

cantilever forward-swept wing designs. These improvements would be even

greater if the secondary aeroelastic instabilities had higher critical

airspeeds. They limited the improvement because as the critical airspeeds

for the primary (most critical) instabilities are increased to large values

with active control, the secondary instabilities then determine the most

critical airspeeds for the wings. Unfortunately, the critical airspeed for

the secondary instability is shown in one example to decrease at the same

time that the airspeed of the primary instability increases. In Case 1, U
f

drops severely as Ud increases, with the application of active controls.

However, if active controls were applied to a forward-swept wing of

conventional construction this loss in flutter speed could be tolerated.

The secondary instability of flutter has shown to be high without active

control for forward-swept wings of conventional construction. Therefore,

with application of feedback control, the critical airspeed for flutter

could drop considerably, in trade for increases in the critical airspeed

for divergence. By improving this divergence instability active controls

can make metal construction of forward-swept wings feasible. This same

argument can also be applied to conventional (non-aeroelastically tailored)

composite wing construction.

The trade in improvement of Ud at the expense of a lower Uf suggests a

possible modification of current optimal design logic for designs that will
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use active control for aeroelastic instabilities. Typically, optimal

design methods (especially those automated on digital computers) attempt to

hold the wing's structural weight to a minimum, while moving all

aeroelastic failure mechanisms outside the wing's performance envelope.

This design optimum is useful for wings that do not employ active control

for aeroelasticity. It does however tend to produce designs in forward

sweep that have U and U close together and just outside the operatingd f
envelope of the aircraft. This optimum criteria may not always be the most
useful for wing designs that incorporate active control for divergence

instabilities. Since no control law, using any combination of sensor and

flap configuration, could be found to improve both flutter and divergence

at the same time, a different design optimum may be more useful for

forward-swept wings. Techniques (such as aeroelastic tailoring for a

composite wing structure) may provide better candidate designs for active

control of divergence if the optimal design procedure focuses on providing

extremely high airspeeds for flutter. Then active control would be focused

on divergence. A drop in the critical airspeed for flutter could then be

tolerated if necessary as active control provides the necessary increases

in divergence airspeed.

Since divergence is a static aeroelastic instability, it should be

expected that displacement feedback provides the only successful

active-control suppression of divergence. Unfortunately divergence

suppression could not at same time be successfully combined with flutter

suppression to compensate a wing that had low values of both Ud and Uf'.

The feedback solution for one instability tended to disable the feedback

compensation for the other instability. This lack of compatibility

between diverreiice and flutter compensation suggests that applications of

optimal control techniques (that use full-state feedback) could have

difficulty with wings that have unacceptable values for both U and U

d C

Some insight can be gained from these examples into the best locations

for sensors and control surfaces to improve the divergence instabilities of

forward sweep. For divergence, sensor locations and signal combinations
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that provide angle-of-attack information appear to be the most useful.

Consequently signal differencing between sensors located streamwise is

desirable for divergence compensation. For flutter however, accelerometer

locations strongly depend on the wing dynamic responses of each particular

application. Therefore optimum locations for sensors used in flutter

compensation cannot be suggested for all wing designs using just these

examples. When considering control surface configurations, the best flap

locations for divergence suppression should be near the wing tips. The

leading edge provides great influence for a flap of small size on the

pressure distributions of a forward-swept wing. Thus the leading-edge tip

region appears to be the best location for control surfaces that must

stabilize divergence. The best flap locations for flutter suppression of

forward sweep on the other hand requires further study. Again the dynamic

responses that contribute to the flutter mechanism depend heavely on the

particular characteristics of each wing design. Locations of node lines

and maximum amplitude areas for the vibration modes usually dictate the

best locations for the flaps providing flutter suppression.

While developing promising active control compensation for

aeroelasticity, improvements were also made in the methods for calculating

aeroelastic stability. Based on the airfoil stability results, a Pad6

Approximant aerodynamic-force formulation was used for the damped motion of

the cantilever wings and contributed to very good stability predictions.

The key modification to the formulation of the Pad4 Approximants is the

common denominator. When the averaging of the denominators is used, the

additional roots in the stability analyses (introduced by aerodynamics) are

held to a minimum, and noe of these "aerodynamic" roots have positive real

parts. Thus, the PadO Approximants did not confuse the determination of

structural stability using the structural roots with an unacceptable number

of "extra" roots from the aerodynamic approximations. Now when good

experimental force data from damped lifting surface motion are measured and

made available for correlation new insight may then be gained leading to
%better functions for aerodynamic approximations. These data are especially

needed for control surface motion. A prime candidate would be fractional
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orders of s similar to those used by Bagley for viscoelastic materials 1P

(Ref. 31). The fractional orders of his method are suggested

aerodynamically by the Bessel functions in the doublet-lattice sinusoidal.

solution used as the basis for the Pad Approximants. The polynomials used

in this dissertation, however, are very easy to include in the transformed

equations of motion. Also their agreement with known experiments are so

good that the solution difficulties when calculating wing stability using

other approximating functions may far outweigh improvements new functions

could offer in stability predictions.

There were also some consistant trends observed in the root locus

plots that may be useful whether active control is considered or not. The

root loci for all the uncompensated airfoils and cantilever wing6 suggest

that roots associated with the first bending or plunge mode will always

define divergence. A similar observation can be made for flutter. The

root associated with the lowest vacuum frequency torsion mode defines

flutter as long as there is no active control present. The divergence

result stems logically from the great similarity between a wing's

deflection shape at divergence and its first bending mode. The equivalent

association of flutter with the lowest torsion mode is not as clear. Since

flutter of cantilever wings can be obtained using only the

degrees-of-freedom associated with the modes of first torsion and first

bending (Ref. 2), it would seem that there should be some flutter examples

that are deiined by loci associated with the bending modes of vibration.

No example of this flutter can be found in these cases, however.

In summary, successful applications are made here of active control to

the aeroelastic instabilities of flutter and divergence in forward-swept

wings, the prime goal of this research. The active control results from

the wing examples show specifically that it is possible to improve the

aeroelastic stability of forward-swept aircraft wings of conventional

construction with active control. The use of conventional design

techniques to determine the best compensation configurations provided some

insight into the most useful control surfaces and wing measurements for
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improving aeroelastic stability. Optimal control techniques should now be

used to obtain the maximum improvements available with active control for

these aeroelastic instabilities for particular aircraft applications.

Ih

q.

... %. ..-...........+..+ ....-.. . . ....... . . . ..-. - . . . .-. . " '. . . . . ... . . ... . ,. r -'. . . . . . . . .." : -' '' '" "

. . . . . . . . .



BIBLIOGRAPHY

1. Schlichting,H., Boundary Layer Theory, J. Kestin, trans.,
6th ed., McGraw-Hill, New York, 1968.

2. Bisplinghoff, R. L., Ashley, H., and Halfman, R. L., Aeroelasticity,
Addison Wesley, Massachusetts, 1955.

3. DeMeis, Richard, "Forward Swept Wings Add Supersonic Zip,"
High Technology, Jan-Feb, 1982.

4. Weisshaar, T. A., "Divergence of Forward Swept Composite Wings,-
AIAA Paper No. 79-0722, 1979.

5. Griffin, K. E., "An Aeroelastic Tailoring Study of a High Aspect Ratio
Wing," NASA TM-X-337, Nov., 1975.

6. Krone, N. J., "Divergence Elimination With Advanced Composites,"
AIAA Paper No. 75-1009, 1975.

7. Rauch, F., and Wilkinson, H., Final Report for Air Force Flight
Dynamics Laboratory of Contract F33615-78-3223, 1979.

8. Griffin, K. E., and Eastep, F. E., -Active Control of Forward Swept
Wings With Divergence and Flutter Aeroelastic Instabilities,"
AIAA Paper No. 81-0637, 1981.

9. Miller, G. D., Wykes, J. H., and Brosnan, M. J., "Rigid Body-Structural
Mode Coupling on a Forward Swept Wing Aircraft,"
AIAA Paper No. 82-0603, 1982.

10. Chipman, R. R., Zislin, A. M., and Waters, C., "Active Control of
Aeroelastic Divergence," AIAA Paper No. 82-0684, 1982.

11. McRuer, B. T., Benun, D., Olick, G. E., "The Influence of
Servomechanisms on the Flutter of Servocontrolled Aircraft,"
AFTR No. 6287, March 1954.

12. Andeer, R. E., "Stabilizing Flexible Vehicles," Astronautics and
Aeronautics, Aug 1964.

13. Rogers, K. L., Hodges, G. E., and Felt, L., "Active Flutter
Suppression-A Flight Test Demonstration," Journal of Aircraft, Vol.12,
June 1975.

14. Hwang, C. and Pi, W. S., "Application of Optimal Control Techniques to
Aircraft Flutter Suppression and Load Alleviation,"
AIAA Paper No. 82-0724, 1982.

w 
9

93

.0

"- " -~~~~~~~~~~~~~... .....-.. "...................•.-...... - ".*.. ... .... " .--. ,- _ . ! ._o_ ....... " '-"-
' ,',,. . " ". .. " - .L - - - Fl MI I m l

- - ''



15. Peloubet, R. P., Jr., Hailer, R. L., and McQuien, L. J., "Feasibility
Study and Conceptual Design for Application of NASA Decoupler Pylon to
the F-16," NASA Contractor Report 165834, May 1982.

16. Theodorsen, T., "General Theory of Aerodynamic Instability and the
Mechanism of Flutter," NACA Report 496, 1935.

17. Fant, J. A., "Conceptual Design of Advanced Composite Airframes," Air
Force Materials Laboratory, AFML-TR-73-4, Feb. 1973.

18. Giesing, J. P., Kalman, T. P., and Rodden, W. P., "Subsonic Unsteady
Aerodynamics for General Configurations," Air Force Flight Dynamics
Laboratory, AFFDL-TR-71-5, April, 1972.

19. Vepa, R., "On the Use of Pad6 Approximants to Represent Unsteady
Aerodynamic Loads for Arbitrarily Small Motions of Wings,"

AIAA Paper No. 76-17, Jan. 1976.

20. Edwards, J. W., Ashley, Holt, and Breakwell, J. V., "Unsteady
Aerodynamic Modeling for Arbitrary Motions,~ AIAA Paper No. 77-451,
1977.

21. Baker, G. A., Jr., Essentials of Padd Approximants, Academic Press,

1975.

22. Schwanz, R. C. and Heath, C. B., -Application of Aerodynamic
Approximating Functions To An Aspect Ratio 6.8 Flexible Wing,"

Air Force Flight Dynamics Laboratory, AFFDL-TM-78-88-FGC, Feb. 1979.

23. Peloubet, R. P., Haller, R. L., and Bolding, R. M., "F-16 Flutter
Suppression System Investigation," AIAA Paper 80-0768, May 1980.

24. D'Azzo, J. J., and Houpis, C. H., Linear Control System Analysis and
Design: Conventional and Modern, McGraw-Hill, 1975.

25. Smith, B. T., Boyle, J. M., Garbow, B. S., Ikebe, Y., Klema, V. L., and
Moler, C. B., Matrix Eigensystem Routines, Springer-Verlag, 1974.

26. Bjorck, Ake, and Dahlquist, Germund, Numerical Methods, Prentice Hall,
New Jersey, 1974.

27. Destuynder, R., "ESSAI E. Souffleric Dun Suppresseur de Flottemen Sure
Une Aile Droite,' 40th Meeting of Structures and Materials Panel of
AGARD in Brussels, April 1975.

28. Theodorsen, T. and Garrick, I. E., -Flutter Calculations in Three
Degrees-of-Freedom," NACA Report 736, NACA, 1941.

29. Nissim, E., -Flutter Suppression Using Active Controls Based on the
Concept of Aerodynamic Energy," NASA-TND-6199, March 1971.

94

-. 2. . . . . . . . . . . .



*b
-6

30. Hassig, H. J., "An Approximate True Damping Solution of the Flutter

Equation by Determinant Iteration," Journal of Aircraft, Vol. 8,

Nov. 1971.

31. Bagley, R. L., "Applications of Generalized Derivatives to

Viscoelasticity", Air Force Material Laboratory, AFML-TR-79-4103,

November 1979.

32. Sherrer, V. C., Hertz, T. J., and Shirk, M. H., "A Wind Tunnel

Demonstration of the Principle of Aeroelastic Tailoring Applied to
Forward Swept Wings," AIAA Paper No. 80-796, May 1980.

33. The NASTRAN User's Manual, (Level 17.0) NASA SP-222 (04), National
Aeronautics and Space Administration, Washington, D. C., December 1979.

34. McCullers, L. A., and Lynch, R. W., "Dynamic Characteristics of

Advanced Filamentaty Composite Structures," Air Force Flight Dynamics
Laboratory, AFFDL-73-111, Sept 1974.

9I
. .. ..

. . .. . . . . . . . . . . . . . . . . . . .
. . . . . .. . . . . . . . . . . . . . . . . . . .



APPENDIX A

Solution Method Evaluations Using

A 2-D Airfoil

I

The following presents an evaluation of possible aerodynamic

formulations and their solution methods that can be used for wing stability

analysis. The lifting surface used for the evaluation is a simple

two-dimensional airfoil that was used by Theodorsen (Ref. 16) to develop

stability methods for the prediction of aeroelastic flutter and divergence.

There are two possible methods that can be used with the stability

calculations of the airfoil. First, a direct method suggested by Edwards

(Ref. 20); and second, a more indirect method using PadA Approximants as

suggested by Vepa (Ref. 19). The results of this airfoil study suggests

the Pad6 Approximant method for the forward-swept cantilever wing.

Geometry

The two-dimensional airfoil for these method comparisons is shown in

Figure Al. The airfoil is suspended from two linear elastic springs in an

airflow moving from left to right in the figure. The spring suspension is

shown connected to the shear center location of the camber line in Figure

AIA. The forces acting on this same airfoil are shown in Figure AIB. This

simple airfoil geometry permits the economical evaluation of two different

formulations of aerodynamic forces for damped lifting-surface motion.

The airfoil geometry of Figure AIA uses as a basic dimension the

semi-chord b, with most of the other dimensions represented as fractions of

b. Thus, the chord length is 2b, with the y axis passing through the

mid-chord of the airfoil. The two degrees-of-freedom used to define the

airfoil motions are airfoil plunge (vertical displacement, h, in the

negative y direction) and airfoil pitch angle (9, or rotation). For this

pitch angle, clockwise is positive. The plunge motion of the airfoil

%U
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corresponds to the motion of a streamwise section at any span station of an

unswept wing, as that wing undergoes bending deformation. The pitch motion

corresponds to wing torsional deformations at that same wing section. The

airfoil aerodynamic loads are resisted both by the linear torsional spring

(twisted with the pitch-angle rotation) and the linear

extension/compression spring (deformed with the plunge translation). These

springs are attached at the airfoil's shear center, a location that allows

the decoupling of its plunge stiffness from its torsional stiffness. This

shear center is a distance ba downstream from the airfoil mid-chord. The

two springs are represented by the spring constants Kh and K0 for the

plunge and torsional stiffness respectively.

Also shown in Figure AlA is the geometry for leading- and

trailing-edge flaps used for aeroelastic stability augmentation of the

airfoil. The hinge point for the leading-edge flap is located cb aft of

the mid-chord. Likewise, the trailing-edge hinge point is db aft of the

mid-chord. The deflection angles are measured relative to the chord line

of the airfoil, with a positive rotation being clockwise.

In Figure AIB, the forces acting on the airfoil and the airfoil's

center-of-gravity (c.g.) are shown. The c.g. is located a distance bx

downstream from the shear center, and it is at this location that the

translational (plunge) mass Mb and the airfoil's rotary-pitch inertia I

are defined.- The aerodynamic forces on the airfoil are represented by two

force components, the aerodynamic lift, L, and pitching moment, MO, acting

at the airfoil's quarter chord. The linear springs provide structural

resisting forces to the airfoil deflections h and 0 that are linearly

related to these deflections by the spring constants Kh and K 9,

The stability calculations for the airfoil are made using an

equilibrium position defined as zero angle-of-attack and zero plunge

displacement. Thus, prior to disturbing the airfoil, the equilibrium

conditions are zero lift, L, and zero aerodynamic pitching moment, M .

A-3
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Using this basic airfoil geometry, Theodorsen developed many examples

of critical airspeeds for flutter, Uf, and divergence, Ud. The differences

in the examples were created by varying such airfoil characteristics as Mh ,

I o , Kh, K9, x., etc. Two of these examples are used in the evaluation of

the aerodynamic-force formulations to be used for the wing stability

calculations. The equations of motion for the airfoil will now be

developed.

Equations of Motion

The airfoil equations of motion are developed in a similar manner as

those for the cantilever wing. Lagrange's equation, equation 12, is

applied to energy terms developed for the two degrees-of-freedom of the

airfoil. Due to the small number of degrees-of-freedom, the h and 0 are

used directly to describe the airfoil motion rather than using a coordinate

change to the vacuum vibration modes.

The kinetic energy T for the airfoil is calculated using the

velocities of each element of mass along the chord of the airfoil. As in

the cantilever wing, the assumption of small displacements is again made.

Because velocities in the vertical direction are the only velocities large

enough to significantly contribute to the kinetic energy, the vertical

displacement along the wing chord, h(x), is used to calculate these

velocities.

h(x) -h - O(x - ba) (A.1)

The airfoil's kinetic energy then is the sum of the velocity and mass

contributions along the chord line:

ib
- 2-

T = I/2(h) pdx

(A.2)

S1/21-h - (x- ba)] 2(x)dx
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As a function of chord location, the mass of the airfoil is P. The

kinetic energy can be written in a simplified way.

b
-b

b%

1 = - ba) 2  (x)dx (A.4)

S0  ( - ba) (x)dx

(A.5)

- bx AN

All of these equations allow the kinetic energy to be expressed as:

T = 1/ 2 1h 2 + 1/2196 + S.6h (A.6)

The term S is the inertial coupling introduced between 9 and h. It is
9

necessary since h is measured from the shear center and not the c.g.

location. The strain energy term U for the airfoil is the summation of the

strain energy in the pitch and plunge springs created by displaclements in

9 and h.

U 1/2h 2 Kh+ 1/20 2 K(A.7)

All that is needed for the airfoil stability calculations is the

gereralized airforces. Two possible formulations of aerodynamic forces

will be developed in the following sections. The aerodynamic formulations

dictate the stability solution method that can be used.

Applying equation 2 to the kinetic and the strain energy calculations

for the airfoil, the equations of motion are derived, one for each

degree-of-freedom of the airfoil.

A-5

a.. . . .a........................



Mhh + SeO + Kh = Qh (A. 8)

Shb + 10 + mOO = QO (A.9)

The equations are organized in matrix form in a similar fashion to that of

the wing.

[ h  :1 + Kh 0. ]h .

S0 0  0. K 0  Q0 (A.10)

[MI + [K] =

Since the airfoil is used to evaluate aerodynamic-force formulations

employed later on the cantilever wing in the Laplace domain, the equations

of motion for the airfoil must also be transformed using the Laplace

operator. Therefore, equation A.10 is transformed in a similar manner to

that performed on equation 1i.

s 2[M] [K] 'h (A. 11)

When the generalized forces are also tranformed to the Laplace domain (as

will be shown in the following sections), the stability for the airfoil is

then determined by the airfoil's response to a small disturbance as

indicated by the value of the roots of the airfoil's characteristic

equation.

Aerodynamic Forces

The aerodynamic forces are developed next for the airfoil in the

Laplace domain. For active control applications, these aerodynamic forces

must also include contributions made by the movement of leading- and

trailing-edge flaps. In order to account for damped airfoil motion, two

formulations are examined for suitability with the wing calculations. The

first method gives damped-motion airfoil aerodynamics similar to those

A-6

- . . . . . . . . . . ..... . ... . CI'"'" " "-'" "" " ' '' " " " " " '

. .. 4,.% ,,'..., " , -. -(~ *4 ** ~ * 4 ~ 4 . . 4 4 4 . 4 .



developed for sinusoidal airfoil motion by Theodorsen. The second method

is a formulation that uses Pad6 Approximant polynomials to approximate the

aerodynamic forces. The discussion of these methods can be made clearer by

first recalling Theodorsen's sinusoidal method.

Theodorsen's Method

For two-dimensional incompressible flow over a sinusiodally

oscillating airfoil, Theodorsen (Ref. 16) developed the aerodynamic lift

and moment forces of equation A.12 as functions of time. The sinusoidal

lift, L, and moment, M are defined at the airfoil's shear center byJ • S.C.'

the following equations:

K2

L = Ypb [h+U G -bCl, 01

+2 rlpUb e(k)[h+UG+b(.5-C 0] (A. 12a)

M )sc =rpb (bC, h-Ub(.5-Clc )G-(1/8+CI 9]
+ 2 T 2 (.5+Clc) (k)[h+UG+b(.5-Cl )O (A.12b)

Here sand U are the freestream density and airflow velocity respectively;

CIO is the lift-curve slope of the airfoil section; and C(k) is the

Theodorsen Function of the reduced frequency k described in equation A.14.

The Theodorsen Function e(k) is defined as a ratio of Hankel functions in

the variable k.

i(2) (2"2

e(k) = (H )(k)) / (H l(Z(k) + iHo(2)(k)) (A.13)

These are zero- and first-order Hankel functions of the second kind. Here

k is the frequency of airfoil oscillation that is non-dimensionalized by

the airfoil semichord and freestream velocity.

k = LWb/U (A.14)

Using the Theodorsen Formulation for the aerodynamic forces, neutral i

stability airspeeds for the airfoil can be found. In these stability

Ik'.°
i-
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"
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calculations, solutions of the equations of motion are obtained for

oscillatory motion that is of constant amplitude, the type of motion on

which the Theodorsen formulation can be applied.

Edwards' Method

The aerodynamic-force formulation used with the active controls must

be expanded to include damped motion of the lifting surface. Also the

Laplace domain is the most convenient domain for solving design problems in

linear controls. The solution methods, in the Laplace domain, involve only

algebraic manipulations of the equations of motion. Edwards (Ref. 20)

suggests a method for extending the Theodorsen formulation to damped

airfoil motion in the Laplace domain. This method provides a direct

calculation of these airloads, provided that the value of the Laplace

variable s describing the wing's motion is known a priori.

The development of this method, which is described in detail in

Reference 20, is highlighted next. The Edwards' formulation gives the

transformed loads of lift and moment (caused by damped motion) at the shear

center of the airfoil section in a similar fashion to Theodorsen's

sinusoidal formulations. The airloads are essentially the Laplace

transforms of equations A.12, where the transform (s) of the Theodorsen

Function e(k), is again calculated from Bessel functions.

ecs) =(K (s)) (K (S) + K (s)) (A.15)

The terms K and K are modified Bessel functions of the second kind, zero

and first-order respectively. The variable s is a non-dimensionalized form

of the transformed variable s. It contains the reduced frequency of

oscillation in its imaginary part.

s = sb/U

= 0-b/U + ik (A.16)

When put in a matrix form, these transformed aerodynamic forces define an

influence coefficient matrix that is compatible with the aerodynamic forces

of equation A.11.

A-8
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(Q9 s[ RL hh h OPh h (A . 17 )
0o )  AOh o0

The elements of this matrix can be recognized as the transformed

constituents of equations A.12, with a typical example being shown in

equation A.18.

A0 g Pb 2rf - Ub( .5-C )s-b 2 ( 2/8+ClC )s2

+2 VPb (C I +.5) e[U+b(.5-CI )sJ (A.1I)

This formulation for the airfoil's aerodynamics causes some difficulty when

it is used in the stability calculations of the airfoil. The difficulty is

caused by the Bessel functions contained in the e formulation. The

variable s cannot be factored out of these Bessel functions. Thus, s must

be known in order to obtain a value for e(s). Unfortunately, s is one of

the values sought in the stability analyses. This difficulty with the

Edwards' formulation for the airfoil's aerodynamic forces requires a

cumbersome iteration method for the stability calculations (discussed

later). But what is needed is a way of posing the airfoil (and later, the

wing) aerodynamics in such a way that the motion variables can be factored

out of the airload predictions. The following approximation method

provides just such an aerodynamic formulation.

Pad4 Method

Several sets of aerodynamic forces, calculated for different

frequencies and damping levels of airfoil motion, can be used in the

development of airload approximations for damped motion by use of Pad4

Approximants (Ref. 19). First the aerodynamic forces corresponding to

selected values of damped airfoil motion can be calculated using Edwards'

method. The value of s corresponding to the motion contains the damping

level in its real part and the frequency in its imaginary part. Using a

set of different s values, a corresponding set of damped aerodynamic forces

can be calculated that can be used to estimate the forces as functions of

s. Approximations can be made of the airfoil's aerodynamic forces

A-9
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(calculated for different values of s) by requiring a least-squares fit of

selected functions of s to the above aerodynamic forces. The functions

used to approximate the aerodynamic forces are chosen based on their

accuracy of approximation and their compatibility with the equations of

motion. The form used in this research is the Pad6 polynomial

approximation similar to that suggested by Vepa. It provides a functional

form for the approximations that easily combines with the other terms in
p."

the equations of motion. Note that the special case of sinusoidal motion

of constant amplitude can be directly related to a reduced frequency used

with sinusoidal aerodynamic-force calculation. This relationship can be

seen using the non-dimensional form of s.

s = b(O. + iW)/U (A.19)

= ik

The form of the Padd Approximant used here for the aerodynamic forces

delineates ratios of polynomials in s. Pfjl and Qfjl are the real-value

f
coefficients of the variable s , with the limits of f being n and d for

numerator and denominator respectively.

n d

ffA [L(Pfjl / [1. + (Qf)S (A.20) %

f=O f=O

The values of n and d determine the orders of the polynomials used to

approximate the aerodynamic forces. The orders of the polynomials for the

airfoil calculations are selected using criteria based on the upper and

lower limits of the frequency of the aeroelastic instability that must be

calculated. For the stability analyses, the need for high orders for

polynomials is tempered with the need to minimize the computational effort

that increases as n and d increase. The relative order of numerator

polynomial versus the denominator polynomial is based on the high and low

frequency limits of the lifting force L. The orders of s, O(s ), from a

Laplace transformation of equation A.12 would be as follows.

A- I0
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L(s) f ((s)) 4 f 2(O(s)) (s) (A.21)

Here the function f is the non-circulatory lift term containing

second-order terms of s, and the function f2 is the circulatory lift term

containing first-order terms of s. When the orders are determined for the

approximation to C(s), the overall orders for lift and moment

approximations can be calculated.

The polynomial approximation of e(s) is suggested by its equivalent

formulation for indicial responses. The basic form of the e approximation
is a polynomial ratio of s.

C(s) =[EPis
1 I IZQ SJl (A.22)

i=1 j=1

Here Pf and Qf are real coefficients of s. The best choice for the ratio
f A

of A to d can be obtained from Wagner's Indicial Function t(s) (Ref. 20).

This function t(s) is found in the response caused by indicial input in the

same way that the sinusoidal Theodorsen Function Ck) is found in

response to sinusoidal input. The limits that '(s) exhibit are displayed

in terms of the variable s.

LMm tI(s) = .5

s -* 0

(A.23)

Lim -t(s) = 1.

If a ratio of polynomials is used to approximate t, the above limits would

require the numerator and denominator to be the same order. This ratio for

t suggests that the t counterpart, e(s) should also have equal-order
A A

polynomials. Therefore, d equals n for the e(s) polynomial
approximations.

.3%1
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With the ratio of polynomial orders set for the approximation can

be included in equation A.21 to obtain the ratio of polynomials needed for

the aerodynamic forces. An example of the evaluation needed polynomial

ratios can be made with the transformed lift forces created by the airfoil

plunging degree-of-freedom. The force L is put in the form of equation

A.21, and the approximation for C is included.

AA

(s) = f1(O(s 2)) + f2(O(s)) e(o(sd/Sd (A.24)

Equation A.24 can be rearranged to show the orders of s needed for the

polynomial approximation for this force.

A A
d+2 d

f3 (O(sd) / O(sd)) (A.25)

Equation 25 shows that the order of the numerator for L should be two

higher than the order of the denominator. This same relative order can be

found for each degree-of-freedom contribution to the loads.

With the ratio of the polynomial orders determined, the absolute value

of these orders is defined by a series of comparisons. These comparisons

are made between airloads calculated using Pad4 Approximants for several
A

values of d and those calculated by the Edwards' formulation. Examples of

these comparisons are given in Table Al. In these examples the component

of lift caused by constant amplitude-plunge oscillations is calculated for

several values of frequency using Edwards' exact method. These forces are

then compared to forces calculated using Pad Approximants. The Pad6

calculations are made with three different orders for the polynomial

approximations. By comparing between the exact calculations of L and

those made using the approximations (both real and imaginary), the choice
A

of 1 for d is best.

The aerodynamic forces just discussed are forces resulting from motion

caused by the airfoil alone. When the control-surface motion is added to

the airfoil, this influence on the lift and moment of the airfoil requires

A-12
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a higher order tor the denominator of the approximations to obtain a good

agreement. This added order for the denominator results in the polynomial

orders for the Pad6 Approximants as order three for the numerator and order

two for the denominator. Using these Pad4 Approximant orders, some

examples are given in Table A2 of polynomial coefficients for the lift and

moment airloads. In the upper portion of Table A2 an example set of

coefficients is presented for the numerator and denominator polynomials of

the lift and moment approximations. These coefficients will later be

recalculated using a simplification of the denominators.

In the upper half of Table A2, a Pad6 Approximant polynomial ratio is

created for each degree-of-freedom contribution to each aerodynamic force

component A.. of the airloads. These polynomial ratios could then be
Ij

organized into elements of an aerodynamic influence coefficient matrix.

However, the denominator from each polynomial ratio would introduce two

roots into the characteristic equation for the airfoil equations of motion.

To simplify the aerodynamic force representation and reduce to a minimum

the number of roots added to the stability calculations, the PadA fitting

process is modified. A second aerodynamic least-squares approximation is

made using a fixed and non-variable denominator for the Pad6 Approximants.

The denominator polynomials from the first least-squares fit are averaged

(giving equal weight to each force component) to form this new fixed

denominator polynomial. Thus, this second fit allows the polynomial

approximations of all the aerodynamic forces to be expressed with a common

denominator. This form for the Padd Approximants will introduce into the

overall stability calculations of the airfoil a total of two roots rather

than two for each element of the matrix aerodynamic influence coefficients.

Using this common denominator, the transformed aerodynamic forces for

the airfoil can be organized in a simplified matrix form. In the airfoil

airloads, the denominator's polynomial coefficients can be factored out

from the matrix expression of the Padd Approximants.

AI
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With rearrangement, this equation simplifies to equation A.27. The

coefficients of the numerators for each force componenet can be organized

into matrices of constants, corresponding to the orders of s. Each

coefficient Pfij is the numerator polynomial coefficient for order f of s.

It is in the Padd Approximant for force i, resulting from degree-of-freedom

j.

Table A2 shows the results of using the denominator averaging for the

Pad6 Approximants of the airfoil. In the lower half of the table, the

coefficients of the numerator and denominator are listed that result from

applying the denominator averaging and second least-squares fit. There are

only small changes in the numerator coefficients, except for the AhO Padn
3-

Approximant. The P3he in this term (the coefficient of s in Ab) is

changed. Fortunately, even with the simplification of the polynomial

denominator, examples shown in Appendix C demonstrated exact agreement of

neutral-stabilty airspeeds between airfoils using the Pad6 Approximant

aerodynamic forces and the neutral stability airspeeds first calculated by

Theodorsen.

With the choice of polynomial orders determined, the values of s used

to generate the airloads that provide the best least-squares fitting

results must be selected. In selecting values of s to generate forces for

the least-squares fittings, the most important measure of merit is the

ability for the resulting force approximations to predict the correct

A-16



flutter and divergence airspeeds. Secondary criteria are the responses of

the wing section below the critical velocities for flutter and divergence.

However, the instability velocities must be predicted correctly, or the

sub-critical responses are not useful. For predictions of Ud, values of s

defining reduced frequencies at or near zero are essential. This

requirement results from the zero-frequency nature of aeroelastic

divergence. For predictions of Uf, values of s that define reduced

frequencies in the range of .3 are needed for the airfoil examples used in

this research. This reduced frequency is an average of the critical

reduced frequencies (occurring at the neutral stability point for flutter)

in the examples used from Theodorsen's airfoil studies. Higher values of

reduced frequency do not improve the predictions of Uf for any of the

configurations of this study. Since higher values of reduced frequency

widen the frequency range the fitting process must span, they are not used.

The selection of values of s used in the least-squares fit for the

Pad6 Approximants is illustrated in Table A3. On the bottom of the table,

exact values for Ud and Uf are given, calculated by using the damped motion

aerodynamic forces suggested by Edwards, which agree exactly with those

originally calculated by Theodorsen. In the listings found above these

exact values, there are lists of values of s used to generate airloads for

the least-squares fit. THe values of Ud and Uf (calculated using the force

polynomials from the fitting of each list of s) are recorded just below the

values of s. In choosing an array of values for s, both the real and the

imaginary values in s must be selected. Table A3 is typical of several

comparisons that can be made. Zero is the best selection for the real

parts of s to be used in calculating Pad6 Approximants. Therefore, the

PadL Approximant polynomials can be calculated using only sinusoidal forces

as their basis, since they provide the most accurate approximations for the

predictions of Ud and Uf'

Control Surface Aerodynamics

For the airfoil, calculating aerodynamic forces of the control

surfaces can be done using the trailing-edge flap/tab equatio.s that were

A-17
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developed in Reference 28. A coordinate transformation is used that was

suggested by Nissum (Ref. 29) to convert the geometry of an airfoil with a

trailing-edge flap and trim tab to an airfoil with leading- and

trailing-edge flaps. The transformed forces caused by the flaps are added

to the equations of motion in the matrix form of equation A.28. The

influence coefficient matrix provides forces as functions of the

transformed flap-deflection angles S and .

The elements of the this matrix contain flap geometry, flow conditions, and

the variable s. These elements were defined first by Theodorsen and

converted into the leading- and trailing-edge geometry using the Nissum

transformation. A typical element is shown in equation A.29.

2 - -2:F 2Asb(-Ts s + 2 + T1s) (A.29)AhO = -Pu b-4 s  1 I 10 1'1

The terms T and T are constants defined by the geometry of the flaps and
i "

airfoil in Reference 28. The control surface's aerodynamic forces can be

calculated directly using Edwards' method when values of s are specified,

or approximated with Padk Approximants when s must be factored out of the

force formulation. The control-surface forces calculated with the Edwards'

method have the same limitation as those forces calculated using his method

for general airfoil motion. This limitation is the stipulation that the

value of s must be known before calculating the control-surface forces.

Since s is the root to be solved for in the stability analyses, an

iteration method must be used. Again a value of s is estimated and then

checked with the equations of motion to see if it is a desired root. But

more direct stability analyses can be made if the control-surface forces

*are represented by polynomials of a PadL ApproxiTnant.

To make the Pad6 approximation of the control surfaces compatible with

those of the airfoil's pitch and pltirge motion, the denominator used for

A- 1 0
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the flaps' aerodynamic forces is taken directly from that used for

approximating the airfoil's pitch and plunge motion. The complex constants

for equation A.30 are calculated from the same series of k values used to r

generate the Pad6 Approximants for airfoil pitch and plunge motion.

Order-three numerator polynomials in s for each element are calculated.

This calculation matches the polynomial orders used with numerator

polynomials of the airfoil pitch and plunge motion. The results can be

organized in matrix form just like that in equation A.27.

1. [[ P 13 P i
2T(=f 3h6 P3hAi s + + PhO POh'i

j[s+QIS~. P P3 0 j O P09J L (A.30)
flap flap

1. [PIs3 + + [P0 1
2 3 0 (A.31)

Ql Q2s +Q s+l. flap flap

The Pad6 Approximant of aerodynamic forces for the contr l-surface

deflections are now compatible with the other aerodynamic forces of the

airfoil and can easily be included in the airfoil's equations of motion.

Control Laws

The feedback loops for the airfoil are shown in Figure A2. They

define the relationships between the airfoil's motion (in the

degrees-of-freedom of the airfoil) and the deployment of the flaps. In

equation form, these relationships are functions that contain linear

combinations of the degrees-of-freedom h, 0, and their derivatives. The

flap-rotation angles are then determined by these weighted combinations of

the degrees-of-freedom. These weighted combinations are contained in the H

functions.

Ji h(K Kh ,K6) + H,,(K,,,K,K,4) (A.32)

P, = h(KOh,Koh,Koij) + ItVo(KoKK)
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In the specification of flap motion, the constants K.. determine, the1J '

relative weight of the degrees-of-freedom and their derivatives.

Mathematically, the constants represent gain settings used for linear

amplifiers in the feedback loops of an actual control system. An example

control law is shown in equation A.32. The relationship between the

trailing-edge flap movement and the elastic-plunge displacement, velocity

and acceleration are contained in H The gain constants K weigh the
O~h'

displacement, velocity, and acceleration in the H function.

H 4h=K 0h +K h +K 4hh (A.33)

When the H function is transformed into the complex plane, a quadratic

compensation loop in the variable s results.

2|
H~h - (Kh + Ks+ Ks 2 )h (A.34)

All of the feedback-control laws can be put in the form of equation A.34.

With these control laws now posed as functions of s, these functions can be

organized into a matrix form compatible with the displacement vector for

the airfoil. For ease in combining these feedback loops with the %

transformed equations of motion, the terms of the polynomials (for the flap

deflections in relation to the airfoil degrees-of-freedom) are organized in

matrix notation.

h H 1 (A.35)

L'Ah 0X9

Equation A.34 is combined with the equation of the flap's aerodynamic

forces (equation A.31). For the equations of motion, the stabilizing

forces car) now be written in terms of the displacements of the airfoil.

3 ..

I(?l 1 [ 3]3 "' 0[O 611h E60 (A.36)
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The equation of motion for the airfoil (equation A.11) can now be written

in terms of influence coefficient matrices made up of complex constants

that can be used to pre-multiplying the airfoil.

Solution Methods

The method for finding these roots (or poles) is dictated by the

formulation of of the aerodynamic forces in the equations of motion. When

the damped aerodynamic forces are represented by Bessel functions (as in

the Edwards' method for the airfoil), a search method is used to find

values of s that make the characteristic determinant go to zero. When the

damped aerodynamic forces are represented by the Padd Approximants, the

roots of the characteristic determinant can be found, using standard

eigenvalue routines that have been put on digital computers. Both of these

methods are discussed for the airfoil.

Edwards' Damped Aerodynamics

When using the Edwards' method for calculating the aerodynamics of

damped airfoil motion, the value of e(s) is needed to calculate the terms

of the aerodynamic forces. But the desired value of s contains the root of

the characteristic determinant. This determinant, however, can only be

formed after the aerodynamic forces are calculated. Therefore, a value of

s must be assumed so that the aerodynamics can be calculated. Then this s

must be checked to see if it forces the determinant to zero. This

procedure requires an iteration method to organize the search for the roots

of the characteristic equation. The iteration method used here is an

adaptation of the method used by Hassig (Ref. 30) in his p-k approach for

classical flutter solutions. In this determinant-iteration method, a

regula falsi search algorithm (Ref. 26) calculates values of s that

systematically drive the determinant to zero. The determinant-iteration

process must be started with wing and flow conditions where the roots are

koown. The starting point used here is the in-vacuum vibration frequencies

at zero flow velocity. Using these roots as initial estimates, parameters

in the equations of motion can be slowly varied. Then the regula falsi

search method gides the search for the roots. The loci of the roots with

. . .. .. . . . . . .
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selected parameter changes are thus constructed. By gradually increasing

the parameter to be varied, the characteristic roots will change slowly and

not confuse the regula falsi search algorithm.

The search procedure required to find each of the characteristic roots

must be carefully programmed. Since the iteration method must search for

each value of s that makes the characteristic determinant zero, sometimes

many evaluations of the determinant are required to identify a root. Each

determinant evaluation requires a calculation of the unsteady aerodynamic

forces. But this procedure can involve large amounts of computer time if,

for example, the velocity increments must be small enough to accommodate

radical changes in the slopes of the loci. Radical slope changes occur,

for example, when two complex conjugate roots coalesce into the real axis

(break-in point) or leave the real axis (break-out). Another difficulty in

this method is the possibility of overlooking a root. Sometimes, when

several loci are near one another, the iteration method can mistakenly

follow the wrong root loci. To avoid this problem, small velocity

increments and close monitoring of the loci developments are required. The

difficulty of tracking individual roots of loci that are very close can

also be aggravated as the order of the equations increases. Sometimes,

several vibration modes can have similar frequencies. This condition puts

many roots near one another at low velocities.

PadA Approximant Damped Aerodynamics

When using the Padd Approximant method for calculating the airfoil

aerodynamic forces, the polynomials of the approximations are in powers of

the Laplace variable s. These constants, organized in the form of matrices

of influence coefficients of equations A.27 and A.30, can be directly

combined with the mass and stiffness matrices to form matrix equations of

motion. The characteristic 4 quation and the associated roots can be

obtainpd by standard eigenvalue programs available on digital computers.

The loci of the roots can be obtained then by choosing all gain and

velocity variables and exercising standard eigcnvailue routines.
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Method Applications

The calculations used to compare aerodynamic force formulations are

the divergence and flutter predictions that these methods provide. The

many combinations of magnitude and location of airfoil inertia and

stiffness characteristics in Reference 16 allow a wide variety of

comparisons to be made. While sweep angle has no direct meaning for the

infinite-span airfoil, the relative locations of shear center and

aerodynamic center can produce airfoils that have divergence as their most

critical aeroelastic instability. These airfoils can be used as check

cases representing the divergence-critical nature of forward-swept wings.

The two aerodynamic force methods, the Edwards' method and the Pad6

Approximant method, are examined using two example cases. The Case D (for

divergence) example has divergence as its most critical aeroelastic

instability, and the Case F (for flutter) example has flutter as its most

critical instability. The physical characteristics are defined in Figure

Al and the values used to describe these cases are given in Table A3.

Edwards' Method

Aerodynamic forces from Edwards' method are used in the airfoil

stability calculations, illustrated in the velocity root loci of Figure A3.

This velocity root locus shows the movement of the characteristic roots of

Case D as a function of changes in freestream airspeed. Only the upper

half of the complex plane is plotted because of the complex conjugate

nature of the roots that have non-zero imaginary parts.

At zero airspeed, the roots lie on the imaginary axis. These axis

locations correspond to the values of the natural vibration frequencies of

the elastic structural modes. Vacuum vibration mode I of the airfoil Case

D (whose motion is dominated by the plunge degree-of-freedom) has a natural

frequency of 10 rad/sec. Therefore, the root locus having its zero

velocity locatlon on the imaginary axis at that value is referred to as

mode I. In siTTilAr fashion, roferttce is made to the mode 2 locus. Its

zero velocity valu( is located on the ir'ginary axis at a value

corresponding to the stcond vacuum vi brdtion frequency, 25 rad/sec.
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As airspeed is increased, movement of the roots of mode I and mode 2

described basic patterns which are repeated throughout all the airfoil

results. The plunge-dominated mode I shows a reduction in frequency by

movements of its roots towards the real axis. At the same time, an

increase in damping is shown by their movement to the left. Once the

conjugate roots meet on the real axis (break-in point), one root moves in a

positive direction along the real axis while the other root moves in a

negative direction. At a velocity of 188 ft/sec, a root of the mode 1 root

pair crossed the imaginary axis, moving towards the right (negative damping

direction). The airspeed at this crossing is defined as U A similar

pattern in the mode I loci is repeated with all the airfoil (and later, the

wing) examples. That is, the divergence velocity is defined by a root that

began as the lowest frequency vibration mode dominated by plunge motion

when velocity was zero.

The second complex conjugate pair of roots move such that as airspeed

is increased, damping is first gained, then later lost. This is shown by

the movement at first to the left and then back right towards the imaginary

axis. Damping finally becomes negative as the roots cross the imaginary

axis at Uf. Because this imaginary axis crossing occurs with non-zero

imaginary parts, the crossing defines flutter rather than divergence. The

airfoil experiences flutter at a velocity of 225 ft/sec. The pattern for

this root locus defining flutter is typical for the other examples of

flutter. All the loci defining flutter have roots at zero freestream

velocity with a frequency of the first torsional (pitch dominated) mode.

Both the divergence- and flutter- critical airspeeds for Case D, using the

Edwards' method for aerodynamic forces, agree with airspeeds that are

predicted by the solutions of Reference 2.

The stability characteristics of Case F are described graphically by

the velocity root locus of Figure A4. The divergence instability is again

defined by the roots of mode I, now at an airspeed of 375 ft/sec, while the

roots of mode 2 define flutter at an airspeed of 218 ft/sec. Again the

Edwards' method for aerodynamics agree with the solutions of Reference 2.
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With the proper prediction shown for the instabilities without active

controls, the investigation into possible feedback control loops can be

made. By actuating the trailing-edge flap proportionally as a function of

the plunge deflection of the airfoil, the velocity root locus of Case D P..

(shown in Figure A5) is calculated. Here the plunge signal is multiplied

by a simple gain value chosen to be .1 rad/in. This positive-feedback

signal drops the divergence velocity from a value of 188 ft/sec (without

controls) to 121 ft/sec (with controls). Along with this, the shape of the

locus of mode 2 has been changed drastically.

The Case D velocity root locus can be further modified with active

control if the flap is deflected proportionally to the negative of the

pitch angle of the airfoil. Figure A6 shows a velocity root locus for this

feedback loop at a gain value of -.1 rad/in. Flutter has now been lowered

to 121 ft/sec, but divergence is absent.

Figures A7 and A8 show similar modifications to the velocity root

locus of Case F. The leading edge flap deflection is related to the plunge

deflection by a gain of .1 rad/in, using positive feedback for Figure A7

and negative feedback for Figure A8. Note that the flutter speed is

strongly influenced by the sign of the feedback signal.

The determinant iteration method of obtaining roots works well for

these simple airfoil configurations. Realistic subcritical damping and

frequency information is obtained by using the Edwards' method for forces

from damped airfoil motion. But a basic difficulty arises with this

method. The regula falsi scheme for new root prediction can easily become

confused when discontinuous changes occur in the root loci. Considerable

logic must be included in the computer routines of this method to deal with

discontinuities. This situation is especially difficult where complex

conjugate roots move to the real axis at a break-in point. At these

points, the roots split in positive and negative real directions. Vhen

this split occurs, the estimation and refinement process of the regula

falsi scheme must be artificially forced to examine (for higher velocity

-3
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roots) only the real axis and not project into the non-zero imaginary

coordinate space for the higher velocity roots. At these points of

possible confusion in the process of generating the root loci, the process

generally requires monitoring of the computer development of the loci by

the investigator, and very small steps in velocity must be imposed to

prevent the roots from changing too much from step to step. Since the

aerodynamic forces are evaluated at each velocity step, these small steps

in velocity require many evaluations of the aerodynamic forces. These

evaluations can result in unacceptable expense for any stability problem

larger than this two degree-of-freedom airfoil.

Similar care must be exercised when roots pass close to one another in

their loci. In these instances, the regula falsi method tends to jump at

times from one root locus to another nearby. As more degrees-of-freedom

are introduced into the equations, this jumping from one locus to another

becomes more of a problem (configurations with many modal frequencies in

close proximity cause this difficulty, such as large bomber and transport

wings). The regula falsi search requires very small increments in

velocity, sometimes increments as small as 1 ft/sec.

Pad6 Approximant Method

The airfoil is also used to confirm the ability of the Pad6

Approximant aerodynamics to predict flutter and divergence. This method

permits the selection of any velocity range for the root loci without the

requirement to start from velocities with known root values. Therefore,

only a small number of velocities in the vicinity of Ud and Uf are used for

the airfoil cases.

Recall that Figure A4 presents the velocity locus for Case F when no

active control is present. The locus lines are drawn using the Edwards'

method for the aerodynamics. Located with the letter X on these loci are

sample root locations calculated using the Pad6 Approximants aerodynamics.

These root locations are representative of several correlation checks made

between the Padd Approximants and the Edwards' method. Exact agreement is

A-35



shown by the Padd roots with the loci calculated by Edwards' method.

Therefore, the Pad6 Approximants' economy of calculation can be exploited

in lieu of Edwards' method, without loss of accuracy at these low levels of

damping.

Evaluation

The results from the airfoil examples suggest that the best method for

calculating aerodynamic loads of the wing examples is by use of the PadA

Approximants. Using this method, the aerodynamic loads must be calculated

for a small number of frequencies only once to perform the squares fitting

process. Any range of velocities can be used in the calculations of the

root loci since the regula falsi search is not required. Finally, there is

no possibility of losing a root since all eigenvalues are calculated at

each freestream airspeed. The limitations of this method evolve from the

fitting process needed to establish a useful relationship between the

motion of the lifting surfaces and the resulting aerodynamic forces. Extra

roots are introduced into the equations of motion from the denominator of

the Pad6 polynomials. For proper predictions of critical airspeed, the

force data used for the fitting process must be purely sinusoidal. Thus,

calculations for highly damped motion can lose accuracy because the

aerodynamic force approximations are developed using zero damping motion.

Perhaps most disturbing is the possibility of roots from the equations of

motion with positive real parts, caused only by the aerodynamic force

approximations (Ref. 22). If the least-squares fitting for the Pad6

Approximants produces a denominator that has roots that have positive real

parts an instability would exist in the airloads themselves, which should

not occur in nature. Fortunately, for the wing examples used in these

studies, no positive roots from the airloads' approximations were

calculated.
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APPENDIX B

The Doublet-Lattice Method

The application of the doublet-lattice method is the first step in

calculating aerodynamic forces due to damped motion of a forward-swept

wing. This method is applicable to the forward sweep geometry and provides

for control surfaces on the wing planform. The following is a brief

description of this sub-sonic compressable flow method.

The doublet-lattice method provides a small-disturbance solution for

unsteady airloads of arbitrary three-dimensional wings (Ref. 18). This

solution is calculated using an array of doublet singularities that satisfy

the small pertibation acceleration potential equations. The acceleration

potential is used to simplify the specification of singularities that

represent the wing. The desired specifications for the near field boundary

conditions are downwash values on the wing planform. By assuming simple

harmonic motion the magnitude of the downwash Iw(x,y)I at x,y due to a

sinusoidal pressure difference IAP(7, )I at T, can be calculated

using equation B.I.

lw(x, y)j 1 -(4 r P U) nj~iA ( W7~)5x7,,~,..,M)d77d (B.1)

Here the kernal of the integral is a function of rcometry, oscillation

frequency, and Mach Number. Tlie doublet-lattice procedure uses an array of

doublets to provide the pressure difference over the winp planform. Thcir

strength can be defined when their do%nwa-h from eqyation B.1 is required

to match the downwash field of a wing. The Ap pressures then provide the

forces on the wing planform.

1-1
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In Figure 4 the doublet-lattice idealization is presented for the

cantilever wing used here in the active control calculations. An example

of one of these doublet-lattice panels is shown in Figure Bi. In Figure BI

the line of doublets, the force point, and the control point are also

marked. In order to properly array the singularities and control points to
• b

avoid numerical singularities the boxes must be oriented to have streamwise

edges but may have arbitrarily swept leading or trailing edges. The panels

become the basic geometric building blocks for the idealization of lifting

surfaces.

The paneling technique provides an orderly way to array the doublet

singularities and specification points for boundary conditions (control

points) to represent the wing. As shown in Figure BI each panel contains

an array of doublets along the quarter chord that have a parabolic strength

distribution along the line. Their strength is zero at the ends of the

line. An arbitrary constant scales their absolute value interior to the

line endpoints. The force point is the point of application of the

resultant force created by the doublets moving through the freestream flow.

It is located at the mid-span quarter chord position of the panel. Each

panel also has a control point for prescribing boundary conditions. The

downwash from the entire wing doublet array must match the actual wing

downwash at the control point. This control point is at the mid-span

three-quarter chord location of the panel. Thus each panel needs one value

to be specified (the strength of the doublets) and supplies one downwash

boundary condition. The doublet strengths can be determined uniquely when

all of the downwash values are specified. These are determined when the

wing motion (such as the vibration mode shapes) is prescribed at each

control point.

The doublet-lattice computer program calculates the influence of each

panel on the oth.,r panels and stores these. ',,en combined with the panel

areas, the result is an influence coefficient matrix. Since the

doublet-lattice method is linear, this influence coefficient matrix is

stored and can be used repeatedly to calculate loads for any wing motion

that occurs at the frequency for whici tht, matrix is calculated.

V -2 N°
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APPENDIX C

Wind Tunnel Correlations

The following presents comparisons between wind tunnel experiments and

Padd Approximant predictions of forward-swept wing stability. The ability

of analyses using Pad6 Approximant based aerodynamics to predict

aeroelastic instabilities of forward-swept wings, especially divergence, is

validated by the following correlations with wind-tunnel tests.

Flutter-prediction capabilities for Pad4 Approximants have previously been a

established in Reference 13. However, the research documented here is the

first application of Pad6 Approximants for the prediction of aeroelastic

divergence. The Air Force Wright Aeronautical Laboratories (AFWAL)

developed divergence wind-tunnel data using flexible, forward-swept,

cantilever wing models in the subsonic wind tunnel at the Air Force

Institute of Technology (Ref. 32). These test data are used to validate

the use of Padd Approximants for divergence.

The wind-tunnel models use composite plates to represent several

variations of full-scale wing-box construction. These model wings are

constructed to produce different structural elastic couplings in

deformation under load. These different couplings provide variations in

divergence airspeeds for the same sweep angle of the model wing. When the

variations of sweep angle are included with the structural variations,

these data provide several examples with which to compare analytic

divergence predictions. The model geometry is pictured in Figure Cl.

Shown in the picture is the cantilever root attachment which is mounted to

the wind-tunnel roof during the tests. Also pictured are three different

structural plates. The aerodynamic (but non-structural) fairing that

covers these plates is shown at the top of the picture, with the wind

tunnel attachment bracketry in place at the wing root. The fairing

maintains the proper airfoil shape while allowing freedom for deformations

C- 1



Figure Cl iq!nd Tunnel Mlodel

C- 2

.'-,* A.r .ow .



r

>p

to aoU -

-4)

0 0
C~

-z (D Ni

"4 - -Ci(

4-) ON. (2)

Li. U' L
0 CD



*in the internal structural plates. The root attachment fitting allows

adjustments of the leading-edge sweep to various negative sweep angles

without changing the elastic characteristic of the flexible wing. The

internal plates providing the strucutural stiffness for the wings are

constructed using layers of graphite/epoxy material. These layers contain

unidirectional graphite fibers in an epoxy matrix. The layers are

laminated together with each layer providing a different fiber direction.

The relative angles the fibers make with the mid-chord line of the wing

define the basic layup of that structural plate. For these tests, the

different plates constructed for the model are fabricated using variations

of a basic layup of 00/+450/-450 . These fiber directions are measured with

respect to the wing's leading edge. The variations are made by rotating

the 00/+450/-450 layup by a small angle (called the kick angle Ak) with

respect to the wing's leading edge. Thus, a layup that has a 7.50 kick
0 0 0

angle is a layup that has fiber angles of -7.5 /-37.5°/+52.50 with respect

to the wing's leading edge. As this kick angle is changed, the deformation

coupling between wing bending and torsion also changes, producing a

corresponding change in the critical airspeeds for flutter and divergence.

The test results for two model internal plates, each tested at three

leading-edge sweep-angle settings, are presented in Table Cl. The data

represent comparisons between wind-tunnel test data and the dynamic

pressure at divergence, q calculated with three analytic techniques. The

first technique presented uses the Padd Approximant method, which is the

basis for the calculations in this research. The second is the

finite-element structural- and doublet-lattice aerodynamic program NASTRAN

(Ref. 33). The third method is the continuous-plate structural-and

doublet-lattice aerodynamic program TSO (Ref. 34). The last column lists

the percentage differences between the PadA Approximant method and the

wind-tunnel test values for qd" Along with the table, some examples are

included of the root locus plots from the Pad6 Approximant stability

calculations for these models. These examples show the effect that

sweep-angle changes have on the sub-critical damping of the roots.

. -'"-. -. - ..



Noting the comparisons of the various methods in Table Cl, a mpximum

* error of 8% is shown between tests and the predictions made with the Pado

Approximant aerodynamics. These approximations use results from the

doublet-lattice method as a basis for their least-squares fitting. But

errors of up to 10% using doublet-lattice are considered acceptable. Since

the PadA Approximants provide predictions that are equal to or better than

what is considered acceptable for the method on which they are based, the

PadA Approximants provide an acceptable analytical model for the

aerodynamic forces.

Figure C2 is the velocity root-locus plot for the model configuration
A 0 o

with A of 0 . The leading-edge sweep is -15 , with the in-vacuum

frequencies for the structural vibration modes appearing at root locations

on the imaginary axis. Mode 1 is the first wing-bending mode at 3.51

rad/sec; mode 2 is the second wing-bending mode at 17.68 rad/sec; mode 3 is

the first wing torsion at 27.29 rad/sec; and mode 4 is the third wing

* bending at 44.96 rad/sec. In this figure, the divergence condition is

defined with a zero-frequency modal crossing of the imaginary axis by the
2

mode I root at a dynamic pressure of 12.9 lbs/in . This instability is

followed at a higher freestream flow velocity by a flutter instability

indicated by mode 3. Again the modes defining both flutter and divergence

in this root locus illustrate root-locus characteristics which are found in

all root-loci examples of this research that contain no feedback circuits.

The divergence condition is defined by the mode whose zero airspeed

ancestry is the lowest frequency bending mode. The flutter condition is

defined by a mode whose zero airspeed ancestry is the torsion mode of

lowest frequency. In this example, q is smaller than qf so the

wind-tunnel model exhibited aeroelastic divergence in test, with the

flutter Instability not observed.

Figures C3 through C5 present root locus calculations using PadC

Approximants of the wind-tunnel model with a Ak of 15 In Figure C1, the

* model is mounted with a A of -150; Figure C2 presents the same wing model

with a A of -300; and Figure C3 has this model at a Aof -45° . In all

uc-5. .J" ->
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three sweep configurations, the most critical aeroelastic instability

predicted (and observed in testing) is divergence.

By comparing Figures C3 through C5, the changes in the root loci (due

to progressive increases in negative leading-edge sweep) are evident. As

the leading edge becomes more forward-swept, both the root locus associated

with divergence and the root locus associated with flutter show changes.

As the forward sweep is increased, the break-in location of the mode 1

roots moves progressively towards the imaginary axis, and the divergence

velocity also decreases. Also, with increased forward sweep, the curvature

of the locus for mode 3 decreases. This is the mode that would define the

most critical flutter speed if the airspeed were sufficiently increased.

This change in cL-vature suggests that the flutter instability should occur

at progressively higher flow speeds for forward sweep angles.

The changes in sweep angle of the model are aerodynamic only and do

not change the model's stiffness. Because the wing is cantilevered at the

pivot-attachment (essentially rigid) outboard of the pivot pin, changes in

the vacuum vibration modes are not measurable as the leading-edge sweep

changes. Thus, sweep angle effects on the model's aeroelastic

characteristics are due only to the aerodynamic sensitivity to sweep.

Even though the vibration modes and frequencies of the model wings do

not change with sweep, sweep does effect the elastic contributions of the

wing to the aeroelastic instabilities. For example, as loads increase, and

the wing bends under these loads, this bending produces more and more

angle-of-attack changes at each span station as wing sweep increases. This

condition is shown in Figure C6. These angle-of-attack changes can either

be positive or negative, depending on whether the sweep is negative or

positive. The effects of torsional deformation on local angles-of-attack

are also similarily modified by sweep. These changes due to sweep suggest

A 0
an explanation for the test point at A of -15 andA k of 150. A

vagueness in the type of response is demonstrated by the model at this test

condition. Toe model did not diverge, nor did it flutter. It exhibited an

C-10

_ Ln.. .. . . ..... .. [J qld
i ' ' '

ln i[,. .... ... . . . . . . . . . .... . . . . . . . . . .. '



0

44

00b

444t

44'44

0

u

'4V bD

u C

94

En U

b

.00o

rri



irregular random movement that fit neither of the above descriptions. Now,

at large values of forward sweep, the wing deflection at divergence is

primary bending. As the forward sweep is reduced, the wing deflection at

divergence contains more torsional deformation. At some low value of t

forward sweep, the importance in divergence of primary bending deformation

versus primary torsion deformations reverses. It appears this transition

may be occurring at the -15 0 sweep condition with a A of 15 0 for the

wind-tunnel model. To investigate this vague test point further, the rate

of change of damping (with changes of velocity at the onset of aeroelastic

divergence) is examined as sweep is changed.

A way of describing the rate at which the loss of stability occurs

with increases in velocity is the degree of explosiveness of the

instability. Classical bending-tors, ion wing flutter has the property that

the system goes from a very stable to a very unstable system with only a

small change in freestream velocity. This can be described mathamatically

using a damping derivative. A numerical approximation of this damping

derivative is useful in the root locus formulation employed here. It is

constructed from the real part of the roots, 07, at two slightly different

velocities, U and U
n n+I *

d0 tC o A ( - a
-n+l n

dU AU U - U (.1
n+l n

Two velocity values, at n and n+l increments in the root locus development,

are compared with the associated real parts of a root of interest. As the

velocity increment is made smaller, a good approximation can be obtained

for the damping derivative, and the approximation gives a numerical value

to the degree of explosiveness of a root crossing the imaginary axis.

Table C2 presents the numerical damping derivative for some of the

test points of tho wind tunnel model. Collected in this table are data for

a,, 0i

scected swrep angles using a fiber kick angle of 15 . For each angle the

value of the damping derivative is calculated using the velocity value just

C-1-2
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prior to and the one at divergence. By comparing the damping derivative

for the given geometries, the case with the smallest damping derivative at

divergence is shown to be the sweep case of -15° . The small damping

derivative suggests that relatively large changes in velocity are required

to observe significant changes in damping. This level of the damping

derivative could appear in testing as vague responses around the

neutral-stability velocity, and it is this geometry that demonstrated the

vague test response. This correlation of predicted response versus test

response reinforces the assumption that in the neighborhood of the

imaginary axis the subcritical airloads of the Padd Approximants produce

good sub-critical response predictions.

In summary the comparisons of the Pad6 Approximant solution with the

wind-tunnel data show that this analytical technique can predict low-speed

divergence instabilities as well as flutter. The sub-critical predictions

of the damping derivative also suggest that the Padd Approximant airloads

work well for lightly damped wing motion. These correlations provide some

confidence in the Pad6 Approximant aerodynamics and their application to

active control solutions of wing aeroelastic divergence and flutter.
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